1, cho ΔABC, trực tâm H. Đường vuông góc với AB tại B và đường vuông góc vói AC tại C cắt nhau bởi . M là trung điểm của BC, đường cao BN
a, BNCD là hình gì
b, Gọi O là trung điểm của AD. C/m OM=1/2 AH
2, cho ΔABC, các đường cao BD,CE cắt nhau tại H. Gọi I là trung điểm của AH, M là trung điểm của BC
a, C/m: lE=lD
b, C/m: D là điểm đối xứng với E qua lM
c, Góc lDM=?
Bài 2:
a: Ta có: ΔAEH vuông tại E
mà EI là đường trung tuyến
nên IE=AH/2(1)
Ta có: ΔADH vuông tại D
mà DI là đường trung tuyến
nên DI=AH/2(2)
Từ (1) và (2) suy ra IE=ID
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ME=MD
hay M nằm trên đường trung trực của ED(1)
Ta có: IE=ID
nên I nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra IM là đường trung trực của ED
hay D đối xứng với E qua IM