a) A= x2 - 6x + 12
b) B= (x - 1)2 + (y + 2)2
ĐỀ CỦA BÀI NÀY LÀ TÌM GTNN HAY GTLN MÌNH CŨNG CHƯA RÕ, BẠN NÀO CÓ ĐỀ THÌ GIẢI CHO MÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
Ta có:(3x-y)\(^2\)\(\ge\) 0 \(\forall\) x
|x+y|\(\ge\) 0 \(\forall\)i x,y
=>(3x-y)\(^2\)+|x+y|\(\ge\)0 \(\forall\) x,y
=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y
Vậy GTNN của biểu thức B là -3
Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0
Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0
Với |x+y|=0=>x+y=0=>x=x=0
Vậy biểu thức B đạt GTNN là -3 khi x=y=0
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
a) = \(x^2-6x+11\)
= \(x^2-2.3x+3^2+2\)
= \(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy min = 2 khi x-3=0<=> x=3
b) = \(-\left(x^2-6x+11\right)\)
= \(-\left(x^2-2.x.3+3^2\right)-2\)
= \(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy max=-2 khi x-3 =0 <=> x=3
Chắc chắn đúng. mik nhé! Tks banj~~~ (:
Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé! :")
A = x^2 - 6x + 11 = (x^2 - 6x + 9 ) + 2 = (x-3)^2 + 2
Vì (x-3)^2 >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2
Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3
a: \(A=x^2-6x+9+3=\left(x-3\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=3
b: \(B=\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x\)
Dấu '=' xảy ra khi x=1 và y=-2