cho 2017 số nguyên dương a1,a2,a3,a4,...,a2017 thõa mãn 1/a1+1/a2+1/a3+....+1/a2017=1009. chứng minh rằng có ít nhất hai trong 2017 số tự nhiên trên bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a1, a2, ..., a2017 là 2017 số khác nhau.
Và0 < a1 < a2 ... < a2017
Vì là số nguyên dương nên ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2017}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2016}{2}=1009\)
Từ đây ta thấy rằng nếu như 2017 số đó là khác nhau thì tổng luôn < 1009 vậy nên để tổng đó bằng 1009 thì phải có ít nhất 2 trong 2017 số đó bằng nhau
có bạn nào làm được bài này theo nguyên lí Đi - rich - lê ko
TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
ĐÂY :
Ta có:a1/a2=a2/a3=....=a2017/a2018
suy ra a1/a2xa2/a3x...xa2017/a2018=(a1/a2)^2017(2017 số bằng nhau nhân với nhau) (1)
mặt khác a1/a2xa2/a3x.....xa2017/a2018==(a1xa2x...a2017)/(a2xa3x...xa2018)=a1/a2018(giản ước)=-5^2017 (2)
Từ(1)và(2) suy ra (a1/a2)^2017=-5^2017 suy ra a1/a2=-5
Theo tính chất dãy tỉ số bằng nhau:
-5=a1/a2=a2/a3=...=a2017/a2018=a1+a2+a3+...+a2017/a2+a3+a4+..+a2018
suy ra a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5
Vậy :a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5
Hôm nào có bài nào khó thì gửi mình giải cho
-5 nha bn trong violympic vòng 12 lớp 7 phải ko chắc chắn đúng lun 100000000000000000000000000000000000000000000000000% vì bài này mik làm rùi.
cho mik nha
Giả sử không có 2 số nào bằng nhau. Coi \(a_1>a_2>a_3>...>a_{2016}>a_{2017}\)
Do \(a_1;a_2;...;a_{2017}\in Z_+\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1009\)( Vô lý)
Do đó có ít nhất 2 số bằng nhau.