chứng minh rằng 24^54.54^24.2^10 chia hết cho 72^63
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ND
3
BT
0
AL
2
DG
13 tháng 8 2016
24^54.54^24.2^10 chia hết 72^63
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
DM
0
D
0
VD
0
MT
8 tháng 10 2016
24^54.54^24.2^10=(2^3 .3)^54.(3^3.2)^24
=(2^3)^54. 3^54. (3^3)^24. 2^24. 2^10
= 2^162. 2^24. 2^10. 3^54. 3^72
= 2^196 . 3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63 .
TH
0
Ta có:
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.2^{24}.2^{10}.3^{54}.3^{72}\)
\(=2^{196}.3^{126}\)
Lại có:
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}\) chia hết cho \(2^{189}.3^{126}\)
Nên: \(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
---
Chúc bạn học tốt :)
cảm ơn bn ! à bn có chơi fb ko?