K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Bài này khó quá!

Mình chỉ giải được câu a thôi!

Bạn tự vẽ hình ghi gt kl nha!

a) Xét 2 tam giác ABI và ADI có:

AI là cạnh chung

Góc A1 = góc A2 (gt)

AB = AD (gt)

Suy ra tam giác ABI = tam giác ADI (c-g-c)

Suy ra IB = ID (2 cạnh tương ứng)

 

11 tháng 11 2016

b) Ta co: goc BIE=goc DIC(doi dinh)

=> goc AIE=goc AIB+goc BIE=goc AID+goc DIC=gocAIC

Xet 2 tam giac AIE va tam giac AIC, ta co:

goc EAI=goc CAI = 45o

chung AI

goc AIE= goc AIC(cmt)

=> tam giac AIE=tam giac AIC (g.c.g)

=> AC = AE

3 tháng 1 2022

 a, Xét ΔABI và ADI ta có 

AI là cạnh chung

A1^ = A2^ 

AB = AD (gt)

⇒ 2 tam giác trên bằng nhau

⇒ IB = ID ( cạnh tương ứng)

b, Ta có BIE^=DIC^ (đối đỉnh)

⇒ AIE^ = AIB^ + BIE^  = AID^ +AIC^ 

Xét ΔAIE VÀ AIC

EAI^=CAI^ =45

chung Ai

⇒ 2 tam giác bằng nhau

⇒ AC = AE

23 tháng 1 2022

a) Xét tam giác ABD: AB = AD (gt). 

=> Tam giác ABD cân tại A.

Mà AH là phân giác góc BAD (gt).

=> AH là trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của cạnh BD (đpcm).

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

22 tháng 3 2022

a) Xét tam giác ABD và tam giác AHD có:

AB = AH ( gt )

^BAD = ^CAD ( Do AD phân giác  )

AD chung 

=> Tam giác ABD = tam giác AHD ( c.g.c )

=> ^ABD = ^AHB ( hai góc tương ứng )

b) Xét tam giác AHE và tam giác ABC có:

AB = AH ( gt )

^ABC chung

^ABD = ^AHD ( cmt )

=> Tam giác AHE = tam giác ABC ( g.c.g )

22 tháng 3 2022

Ôi cảm ơn bạn nhé mừng quá

3 tháng 12 2021

1) Xét tam giác ABE và tam giác DBE có:

+ BM chung.

+ AB = DB (gt).

+ ^ABE = ^DBE (do BE là phân giác ^ABD).

=> Tam giác ABE = Tam giác DBE (c - g - c).

2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).

=> Tam giác ABD cân tại B.

Mà BE là phân giác ^ABD (gt).

=> BE là đường cao (Tính chất các đường trong tam giác cân).

Lại có: BE cắt AD tại M (gt).

=> BE vuông góc AD tại M (đpcm).

3) Xét tam giác FBC có: 

+ BN là trung tuyến (do N là trung điểm của CF).

+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).

=> Tam giác FBC cân tại B.

=> BN là đường cao (Tính chất các đường trong tam giác cân).

=> BN vuông góc FC. (1)

Vì tam giác FBC cân tại B (cmt). => ^BCF = (180- ^DBA) : 2.

Vì tam giác ABD cân tại B (cmt). => ^BDA = (180- ^DBA) : 2.

=> ^BCF = ^BDA.

Mà 2 góc này ở vị trí đồng vị.

=> AD // FC (dhnb).

Mà BE vuông góc với AD tại M (cmt).

=> BE vuông góc FC. (2)

Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm). 

29 tháng 12 2021

a: Xét ΔABI và ΔADI có

AB=AD

\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

Suy ra: BI=DI