cho \(\Delta\) ABC vuông ở A ( AB < AC ) . Trên cạnh AC lấy D sao cho AD = AB, tia phân giác góc BAC cát BC tại I.
a ) chứng minh ID = IB
b ) Gọi E là giao điểm của DI và AB . Chứng minh AC = AE
c ) cho 4ABC = 5ACB. tính góc BCE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD: AB = AD (gt).
=> Tam giác ABD cân tại A.
Mà AH là phân giác góc BAD (gt).
=> AH là trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của cạnh BD (đpcm).
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
Bạn chú ý viết cách phần cho và phần yêu cầu.
a/ Xét t/g ABI và t/g ADI có
AI : chung
\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)
AB = AD (GT)
=> t/g ABI = t/g ADI (c.g.c)
=> BI = DI (2 cạnh t/ứ)
b/ Có t/g ABI = t/g ADI
=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)
=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)
=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có
\(\widehat{IBK}=\widehat{IDC}\)
IB = DI (cmt)
\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)
=> t/g BIK = t/g DIC (g.c.g)
c/ Có t/g BIK = t/g DIC
=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD
=> AK = AC
=> t/g AKC cân tại A
Mà AI là pg góc BAC (K thuộc AB)
=> AI đồng thời là đường cao t/g AKC
=> AI ⊥ KC Mà BH ⊥ KC
=> AI // BH
bạn tự vẽ hình nhá
Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)
a) xét Δ ABI và ΔADI, có:
AB=AD
\(\widehat{BAI}=\widehat{DAI}\) (cmt)
AI chung
⇒Δ ABI =Δ ADI (c.g.c)
⇒BI=DI (2 cạnh t/ứng) (đpcm)
b) Do Δ ABI =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)
Có: \(\widehat{ABI}+\widehat{IBK}\) =1800 (2 góc kề bù)
\(\widehat{ADI}+\widehat{IDC}\) =1800 (2 góc kề bù)
Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)
Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)
xét Δ BKI và Δ DCI có:
\(\widehat{IBK}=\widehat{IDC}\) (cmt)
BI=ID (cmt)
\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)
⇒Δ BKI = Δ DCI (g.c.g) (đpcm)
c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC
Có AB=AD (gt) ; BK=DC (cmt)
⇔AB+BK=AD+DC
⇔AK=AC
⇒Δ ACK cân tại A.
Mà AI là phân giác của \(\widehat{KAC}\) (gt)
⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.
⇒AI ⊥ CK. mà BH ⊥ CK (gt)
⇒AI // BH (đpcm)
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
1) Xét tam giác ABE và tam giác DBE có:
+ BM chung.
+ AB = DB (gt).
+ ^ABE = ^DBE (do BE là phân giác ^ABD).
=> Tam giác ABE = Tam giác DBE (c - g - c).
2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).
=> Tam giác ABD cân tại B.
Mà BE là phân giác ^ABD (gt).
=> BE là đường cao (Tính chất các đường trong tam giác cân).
Lại có: BE cắt AD tại M (gt).
=> BE vuông góc AD tại M (đpcm).
3) Xét tam giác FBC có:
+ BN là trung tuyến (do N là trung điểm của CF).
+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).
=> Tam giác FBC cân tại B.
=> BN là đường cao (Tính chất các đường trong tam giác cân).
=> BN vuông góc FC. (1)
Vì tam giác FBC cân tại B (cmt). => ^BCF = (180o - ^DBA) : 2.
Vì tam giác ABD cân tại B (cmt). => ^BDA = (180o - ^DBA) : 2.
=> ^BCF = ^BDA.
Mà 2 góc này ở vị trí đồng vị.
=> AD // FC (dhnb).
Mà BE vuông góc với AD tại M (cmt).
=> BE vuông góc FC. (2)
Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm).
a: Xét ΔABI và ΔADI có
AB=AD
\(\widehat{BAI}=\widehat{DAI}\)
AI chung
Do đó: ΔABI=ΔADI
Suy ra: BI=DI
Bài này khó quá!
Mình chỉ giải được câu a thôi!
Bạn tự vẽ hình ghi gt kl nha!
a) Xét 2 tam giác ABI và ADI có:
AI là cạnh chung
Góc A1 = góc A2 (gt)
AB = AD (gt)
Suy ra tam giác ABI = tam giác ADI (c-g-c)
Suy ra IB = ID (2 cạnh tương ứng)
b) Ta co: goc BIE=goc DIC(doi dinh)
=> goc AIE=goc AIB+goc BIE=goc AID+goc DIC=gocAIC
Xet 2 tam giac AIE va tam giac AIC, ta co:
goc EAI=goc CAI = 45o
chung AI
goc AIE= goc AIC(cmt)
=> tam giac AIE=tam giac AIC (g.c.g)
=> AC = AE