Tìm x \(\in\) N biết :
5x+4 = 1252
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25^{2x}:5^x=125^2\)
\(\Rightarrow5^{4x}:5^x=\left(5^3\right)^2\)
\(\Rightarrow5^{4x-x}=5^6\)
\(\Rightarrow5^{3x}=5^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
(252)x:5x=1252⇒(252)�:5�=1252
625x:5x=1252⇒625�:5�=1252
(625:5)x=1252⇒(625:5)�=1252
125x=1252⇒125�=1252
x=2⇒�=2
252\(x\) : 5\(x\) =1252
5\(^{4x}\) : 5\(^x\) = 56
5\(3x\) = 56
3\(x\) = 6
\(x\) = 2
dẫu . là dấu nhân nha mn.
mong mn giải giúp mình mình đang cần gấp
\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)
\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)
\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)
\(\Rightarrow n=8\)
\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)
\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)
\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)
\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)
Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)
Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)
Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)
\(\left|5x-2\right|\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-2\le0\\5x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{2}{5}\\x\ge-\dfrac{2}{5}\end{matrix}\right.\)
\(\text{Vì: }\)\(x\in Z\)
\(S=\left\{0\right\}\)
5x+4 = 1252
<=> 5x+4 = 56
<=> x + 4 = 6
<=> x = 2
5x+4 = 1252
\(\Rightarrow\) 5x+4 = (53)2
\(\Rightarrow\) 5x+4 = 56
\(\Rightarrow\) x + 4 = 6
\(\Rightarrow\) x = 2