Tìm ước số chung lớn nhất của tất cả các số có dạng \(7^{2n+2}+8^{2n+1}\)
Chỉ cần nêu đáp án .Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các chữ số của mỗi số là:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
Vì 45 chia hết cho 9 nên các số đều chia hết cho 9
Gọi ƯCLN của các số đó là n
=> n chia hết cho 9 (1)
Xét 2 số:
987654321 và 987654312
Vì n = ƯCLN(987654321; 987654312)
=> 9 chia hết cho n (2)
Từ (1) và (2) => n = 9
Vậy...
Lập được tất cả 362880 số tự nhiên từ 9 chữ số đó
ƯCLN của các số đó là 9
Gọi d là ƯC( n+ 1, 2n + 5 )
\(n+1\Rightarrow2.\left(n+1\right)⋮d\Rightarrow\)\(2n+2⋮d\)
\(2n+5⋮d\)
\(\Rightarrow2n+5-\left(2n+2\right)⋮d\)
\(\Rightarrow5-2⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow3⋮4\)
\(\Rightarrow\)không thể được.
Vậy 4 không thể là ước chung của n+1 và 2n + 5
để n+1 là ước của 2n+1 thì 2n+1 chia hết cho n+1
suy ra 2n+2+5 chia hết cho n+1
suy ra 2[n+1] +5 chia hêt cho n+1
suy ra 5 chia hết cho n+1 [2[n+1] chia hết cho n+1]
vì n thuộc N nên n+1 thuộc{1;5}
suy ra n thuộc{0;4}
gọi 2 số tự nhiên liên tiếp đó là n và n+1
gọi (n,n+1)=d
=>n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d=>d=1
vậy tập hớp các ước chung của 2 sô tự nhiên ={1}
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
\(7^{2n+2}+8^{2n+1}\)
\(=7n+2+8^{2n+1}\)
\(=49.7^n+8.8^{2n}\)
\(=49.7n+8\left(57+7\right)^n\)
\(=49.7^n+8.57T+8.7^n\)
\(=57.7^n+8.57T\)
\(=57.7^n\left(7^n+8T\right)\)
Vậy ƯCLN của số có dạng \(7^{n+2}+8^{2n+1}\) là 57.
Thanks thầy @phynit rất nhiều