K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Bạn tự vẽ hình nhé

a) Xét tam giác ADE và tam giác ACE có:

AD =AC ( gt )

ED = EC ( E là trung điểm CD )

AE chung

=> Tam giác ADE = tam giác ACE (c.c.c )

b) Vì tam giác ADE = tam giác ACE ( c/m trên )

=> Góc AED = góc AEC ( 2 góc tương ứng )

hay góc IED = góc IEC

Xét tam giác DIE và tam giác CIE có:

ED = EC ( E là trung điểm CD )

Góc IED = góc IEC ( c/m trên )

EI chung

=> Tam giác DIE = tam giác CIE ( c.g.c )

=> DI = CI ( 2 cạnh tương ứng )

c) Ta có góc AED = góc AEC ( c/m trên )

Mà góc AED + góc AEC = \(180^0\) ( 2 góc kề bù )

=> Góc AED = góc AEC = \(\dfrac{180^0}{2}=90^0\)

=> \(DC\perp AE\)

Mà BH // DC ( gt )

=> \(BH\perp AE\) ( Định lý từ vuông góc đến song song )

d) Vì BH // DC ( gt )

=> Góc HBC = góc BCD ( 2 góc so le trong)

và góc DBC = góc BCH ( 2 góc so le trong )

Xét tam giác DBC và tam giác HBC có:

Góc HBC = góc BCD ( c/m trên )
BC chung

Góc DBC = góc BCH ( c/m trên )

=> Tam giác DBC = tam giác HBC ( g.c.g )

=> BD = HC ( 2 cạnh tương ứng )

Vì BH // DC ( gt )

=> Góc IHC = góc IDB ( 2 góc so le trong )

Xét tam giác BIC và tam giác CIH có:

Góc IBD = góc HCI ( c/m trên )

BD = HC ( c/m trên )

Góc IHC = góc IDB ( c/m trên )

=> Tam giác BIC = tam giác CIH ( g.c.g )

=> Góc BID = góc HIC ( 2 góc tương ứng )

Mà góc BID + góc BIH = \(180^0\) ( 2 góc kề bù )

Góc HIC + góc BIH = \(180^0\) ( 2 góc kề bù )

=> Góc DIH = \(180^0\)

=> D ; I ; H thẳng hàng

Chúc bn học tốt vui

25 tháng 12 2018

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

25 tháng 12 2018

a, xét tam giác aec và tam giác aed có

ae chung

ec=ed(gt)

ac=ad(gt)

=>tam giác aec = tam giác aed(ccc)

b. từ cma ta có tam giác aec = tam giác aed

=>góc cae=góc dac(2 góc tg ứng)

xét tam giác cai và tam giác dai có

ca=da(gt)

góc cae=góc dac(cmt)

ai chung

=>tam giác cai =tam giác dai(cgc)

=>ci=di(2 cạnh tg ứng)

a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

Do đó: ΔABC=ΔADC

c: Ta có: ΔABC=ΔADC

nên BC=DC

hay ΔCBD cân tại C

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
20 tháng 1 2016

Tam giác đó cân 

 

20 tháng 1 2016

mấy bạn làm giùm mình nha

 

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minha/ ΔABM=ΔECMb/ AB//CEBài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BCa/ Chứng minh : ΔAKB=ΔAKCb/ Chứng minh: AK vuông góc với BCc/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AKBài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D...
Đọc tiếp

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh

a/ ΔABM=ΔECM

b/ AB//CE

Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC

a/ Chứng minh : ΔAKB=ΔAKC

b/ Chứng minh: AK vuông góc với BC

c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA

a/ Chứng minh ΔABM=ΔDCM

b/ Chứng minh AB//DC

c/ Chứng minh AM vuông góc với BC

d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o

Bài 4: Cho ΔABC vuông tại A có góc B=30o

a/ Tính góc C

b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D

c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD

d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD

e/ Tính góc AKC.

Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd

a/ Chứng minh AD=BC

b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD

c/ Chứng minh OE là phân giác của góc xOy

2
11 tháng 12 2016

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

11 tháng 12 2016

Toán hình dài, bn k nên đăng nhiều bài 1 lúc

nên đăng từng bài thui nha!!!

24 tháng 12 2016

đề bài câu d bị sai thì phải

24 tháng 12 2016

câu d đề sai hoàn toàn

25 tháng 12 2018

a, \(\text{Xét }\Delta ADE\text{ có }\)

\(AC=AD\)

\(\Rightarrow\Delta ADE\text{cân tại A}\)

Xét \(\Delta ADE\) cân tại A có:

AE là là đường trung tuyến ứng với cạnh đáy CD

\(\Rightarrow\)AE là đường cao\(\Rightarrow\widehat{AEC}=\widehat{AED}=90\)

Xét \(\Delta ADE\)\(\Delta ACE\) có:

\(\widehat{AEC}=\widehat{AED}=90\)

AE chung

\(EC=ED\)

\(\Rightarrow\Delta ADE=\Delta ACE\) (cặp cạnh góc vuông)

25 tháng 12 2018

b,Từ câu a, ta có:

\(\Delta ACD\) cân tại A

Mà AE là đường trung tuyến ứng với cạnh đáy CD

\(\Rightarrow\) AE là tia phân giác của \(\widehat{CAD}\) \(\Rightarrow\widehat{CAI}=\widehat{DAI}\) \(\left(1\right)\)

Xét \(\Delta ACI\)\(\Delta ADI\) có:

AC=AD

\(\widehat{CAI}=\widehat{DAI}\) \(\text{ theo }\left(1\right)\)

\(AE\) chung

\(\Rightarrow\Delta ACI=\Delta ADI\) \(\left(c-g-c\right)\)

\(\Rightarrow DI=CI\)

10 tháng 12 2018