\(I=\frac{R_2}{R_1+R_2}\times I\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì R1//R2 nên
U=U1=U2
Mà U=Rtđ*I=\(\frac{R1\cdot R2}{R1+R2}\cdot I12\)
⇒U1=U2=\(\frac{R1\cdot R2}{R1+R2}\cdot I12\)
Ta có I1=\(\frac{U1}{R1}=\frac{\frac{R1\cdot R2}{R1+R2}\cdot I12}{R1}=\frac{\frac{R1\cdot R2}{R1+R2}}{R1}\cdot I12=\frac{R2}{R1+R2}\cdot I12\left(đpcm\right)\)
Do \(U=U_1+U_2\)
Nên: u1 cùng pha với u2
\(\Rightarrow\tan\varphi_1=\tan\varphi_2\)
\(\Rightarrow\frac{Z_{L1}}{R_1}=\frac{Z_{L2}}{R_2}\)
\(\Rightarrow\frac{\omega L_1}{R_1}=\frac{\omega L_2}{R_2}\)
\(\Rightarrow\frac{L_1}{R_1}=\frac{L_2}{R_2}\)
Thứ nhất: $(O_1); (O_2)$ tiếp xúc nhau tại $A$ chứ không phải tiếp tuyến tại $A$.
Thứ hai: $(O_1)$ và $(O_2)$ tiếp xúc trong, tiếp xúc ngoài hay đề chỉ nói chung chung là tiếp xúc thôi hả bạn?