K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Ta có: tam giác DEF = tam giác HIK

=> DE = HI ; EF = IK ; DF = HK

=> góc D = góc H

góc E = góc I

góc F = góc K

a/ Ta có: góc E = góc I (vì tam giác DEF = HIK)

Mà góc E = 400 => góc I = 400

b/ Chu vi tam giác DEF= chu vi tam giác HIK

= DE + EF + HK = DE+EF+DF=2+5+6=13 (cm)

Vậy chu vi tam giác DEF = chu vi tam giác HIK = 13 cm

19 tháng 12 2021

Câu 1: B

22 tháng 2 2018

\(gt\Rightarrow\widehat{B}=\widehat{I}\),\(AC=HK\)mà \(AC=5cm\Rightarrow HK=5cm\)

Trong \(\Delta ABC\)\(\widehat{A}=70^o,\widehat{C}=50^o\)

Từ đó \(\widehat{B}=60^o\)

Mà \(\widehat{B}=\widehat{I}\Rightarrow\widehat{I}=60^o\)

Vậy \(HK=5cm,\widehat{I}=60^o\)

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.

9 tháng 8 2021

bạn tự vẽ hình giúp mik nha

vẽ đường cao EH (H\(\in\)DF)

ta có: \(\widehat{F}\)=180\(^o\)-\(\widehat{E}\)-\(\widehat{F}\)=180-70-60=50

EH=EF.sinF=30.sin50=22,98

sinD=\(\dfrac{EH}{ED}\)\(\Rightarrow\)ED=\(\dfrac{EH}{sinD}\)=\(\dfrac{22,98}{sin60}\)=26,54

DH=\(\sqrt{DE^2-EH^2}\)(pytago)=\(\sqrt{26,54^2-22,98^2}\)=13,28

HF=\(\sqrt{EF^2-EH^2}\)(pytago)=\(\sqrt{30^2-22,98^2}\)=19,29

mà:DF=DH+HF=13,28+19,29=32,57

chu vi \(_{\Delta DEF}\)=DE+EF+DF=26,54+30+32,57=89,11

\(S_{\Delta DEF}\)=\(\dfrac{EH.DF}{2}\)=\(\dfrac{22,98.32,57}{2}\)=374,2293

a) Xét ΔDEF có 

EM là đường phân giác ứng với cạnh DF(gt)

nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)

mà DM+MF=DF(M nằm giữa D và F)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)

Do đó: 

\(\dfrac{DM}{5}=\dfrac{5}{11}\)

hay \(DM=\dfrac{25}{11}cm\)

Vậy: \(DM=\dfrac{25}{11}cm\)