Mn giải jum mk nha:
Chứng minh \(\frac{n^3-1}{n^5+n+1}\) không tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi \(UCLN\left(6n+1;8n+1\right)=d\)
Ta có:
\(\left[4\left(6n+1\right)\right]-\left[3\left(8n+1\right)\right]⋮d\)
\(\Rightarrow\left[24n+4\right]-\left[24n+3\right]⋮d\)
\(\Rightarrow1⋮d\).Suy ra 24n+4 và 24n+3 là 2 số nguyên tố cùng nhau
Vậy \(A=\frac{6n+1}{8n+1}\) là phân số tối giản
b)tương tự
gọi (6n+1;8n+1)=d
=>6n+1 chia hết cho d và 8n+1 chia hết cho d
=>4(6n+1) chia hết cho d và 3(8n+1) chia hết cho d
=>24n+4 chia hết cho d và 24n+3 chia hết cho d
=>(24n+4)-(24n+3) chia hết cho d
=>1 chia hết cho d hay d=1
Vậy (6n+1;8n+1)=1 => B tối giản
\(A=\frac{n^3-1}{n^5+n+1}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^5-n^2+\left(n^2+n+1\right)}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)
\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)
bn xem lại đề xemđề có cho n nguyên dương ko nhé,chắc phải có thêm đk đó nữa mới CM n2+n+1 > 1 nên A không tối giản
a) Gọi d là ƯCLN(n, n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n,n+1\right)=1\)
\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.
b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)
\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.
d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)
\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.
gọi d=( n+1, 2n+1)
=> n+1 chia hết cho d=> 2n+2 chia hết cho d
=>2n+1 chia hết cho d=> 2n+1 chia hết cho d
=> ( 2n+2)-( 2n+1) chia hết cho d
=> 1 chia hết cho d
=> d= -1 hoặc +1
=> phân số n+1/2n+1 là phân số tối giản
b, giải
Gọi d là \(UCLN\left(n+1,n+2\right)\)
\(\Rightarrow\orbr{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(n+1,n+2\right)=1\)
\(\Rightarrow\frac{n+1}{n+2}\) là phân số tối giản (ĐPCM)
Nếu \(\frac{7n^2+1}{6}\) là số tự nhiên với n thuộc N thì n/2(*) và n/3(**) là phân số tối giải:
Ta có:\(\frac{7n^2+1}{6}=\) \(\frac{6n^2+n^2+1}{6}=n^2+\frac{n^2+1}{6}\) \(\Rightarrow\left(n^2+1\right)⋮6\)
=> n2 phải là số lẻ=> n phải là số lẻ => không chia hết cho 2=> (*) được c/m.
g/s: n chia hết cho 3 => n=3k
{với k phải lẻ, nếu k chẵn => n chẵn=>k=2t+1=> n=3(2k+1)=6t+3}
=>\(\frac{n^2+1}{6}=\frac{\left(6t+3\right)^2+1}{6}=\frac{36t^2+36t+9+1}{6}=6t^2+6t+\frac{10}{6}\left(1\right)\)
(1) không nguyên với mọi t => điều g/s là sai=> (**) được c/m
\(\frac{n^3-1}{n^5+n+1}\)
\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^5-n^2+n^2+n+1}\)
\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+n^2+n+1}\)
\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)
Vì n2+n+1 chia hết cho chính nó
=> đpcm
thanks bn nhiều