K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

đặt x2=t \(\Rightarrow\) x=\(\pm\) \(\sqrt{t}\)\(dx=\pm d\sqrt{t}\)

ta có A=\(\int e^{x^2}dx=\pm\int e^td\left(\sqrt{t}\right)\)

theo phương pháp nguyên hàm từng phần ta có

A=\(\pm\left[e^t\sqrt{t}-e^t\int\sqrt{t}\right]\)

=\(\pm\left[e^t\sqrt{t}-\frac{3}{2}.e^t.\sqrt[3]{t^2}\right]\)+C

Thay t=x2 vào ta tìm được 2 họ nguyên hàm của \(e^{x^2}\)

12 tháng 11 2016

cảm ơn cậu nhiều

28 tháng 6 2018

Đáp án B

Ta có   ∫ 0 1 e − 2 x + 3 d x = F 1 − F 0 ⇔ e − 2 x + 3 − 2 | 0 1 = e − F 0 ⇔ − e 2 + e 3 2 = e − F 0

Do đó  F 0 = 3 e − e 3 2

15 tháng 3 2021

\(\int e^x\left(2-x\right)dx\)

\(\left\{{}\begin{matrix}u=2-x\\dv=e^xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=-dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow\int e^x\left(2-x\right)dx=e^x\left(2-x\right)+\int e^xdx=e^x\left(2-x\right)+e^x\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 7 2023

Không có nguyên hàm của hàm số f(x) = \(e^{x^2}\)

NV
11 tháng 3 2022

2.

\(I=\int e^{3x}.3^xdx\)

Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)

\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)

\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)

NV
11 tháng 3 2022

1.

\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)

Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)

\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)

\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)

2 tháng 8 2019

Chọn A

31 tháng 8 2019

Chọn A

27 tháng 3 2017

Chọn D

23 tháng 11 2017

18 tháng 12 2016

\(\int\frac{2^{x-1}}{e^x}dx=\frac{1}{2}\int\left(\frac{2}{e}\right)^xdx=\frac{1}{2}.\frac{\left(\frac{2}{e}\right)^x}{ln\left(\frac{2}{e}\right)}+C=\frac{2^x}{2e^x\left(ln2-1\right)}+C\)