CMR : \(M=3^n+3+3^{n+1}+2^{n+3}=2^{n+2}⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đổi lại đề xíu:
M = 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n+1(32+1) + 2n+2(2+1)
= 3n+1.2.5 + 2n+2.3
= 3.2.5.3n + 2.3.2n+1
= 6.(3n.5 + 2n+1) \(⋮\) 6
Bài 1.
2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2nn + 6n
= 6n \(⋮6\forall n\inℤ\)( đpcm )
Bài 2.
P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18
P = m3 + 8 - m3 + m2 - 9 - m2 - 18
P = 8 - 9 - 18 = -19
=> P không phụ thuộc vào biến M ( đpcm )
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
Ta có:3n+2+3n+1+2n+3+2n+2=3n.(33+31)+2n.(23+22)
3n+2+3n+1+2n+3+2n+2=3n.30+2n.12=3n.6.5+2n.6.2
3n+2+3n+1+2n+3+2n+2=6.(3n.5+2n.2)
⇒đpcm
Sửa đề \(3^{n+2}\rightarrow3^{n+3}\)
Giải:
Gọi \(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
Ta có:
\(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(M=3^n.3^3+3^n.3^1+2^n.2^3+2^n.2^2\)
\(M=3^n.\left(27+3\right)+2^n.\left(8+4\right)\)
\(M=3^n.30+2^n.12\)
Vì 30 ⋮ 6 và 12 ⋮ 6
Nên \(3^n.30+2^n.12⋮6\)
Vậy \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\left(đpcm\right)\)
bà mới tốt nghiệp trường khoa học viễn tưởng ak,sao tưởng tượng giỏi thế
A=3^n+3+2^n+3+3^n+1+2^n+2
A=(3^n+3+3^n+1)+(2^n+3+2^n+2)
A=3^n(3^3+3)+2^n(2^3+2^2)
=3^n.30+2^n.12
=6(3^n.5+2^n.2) chia hết cho 6
=>A chia hết cho 6
(Công nhận Nhi giỏi thật mới thi hôm qua mà tối hôm kia đã hỏi)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left(3^n.10\right)-\left(2^n.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
\(=\left(3^n-2^{n-1}\right).10⋮10\)
Tương tự nhé