K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

Giả sử \(\sqrt{5}\) không phải số vô tỉ

Đặt: \(\sqrt{5}=\frac{m}{n}\) (m,n \(\in\) Z m;n khác 0 và ƯCLN(m;n)=1)

=> \(\left(\sqrt{5}\right)^2=\left(\frac{m}{n}\right)^2\)

=> \(\frac{m^2}{n^2}=5\)

=> m2 = 5n2

=> m2 \(⋮\) 5

=> m \(⋮\) 5

Đặt m = 5k

=> (5k)2 = 5n2

=> 5n2 = 25k2

=> n2 = 5k2

=> n2 \(⋮\) 5

=> n \(⋮\) 5

Mà m \(⋮\) 5 => ƯCLN(m;n) \(\ne\) 1 (trái với gt)

Vậy \(\sqrt{5}\) là số vô tỉ.

6 tháng 11 2016

Giả sử \(\sqrt{5}\) là số hữu tỉ => \(\sqrt{5}=\frac{m}{n}\left(m;n\in Z;n\ne0\right)\); (|m|; |n|)=1

\(\Rightarrow5=\frac{m^2}{n^2}\)

=> 5.n2 = m2

Giả sử p là ước nguyên tố của n \(\Rightarrow m^2⋮p\)

Mà p nguyên tố nên \(m⋮p\)

Lúc này; (|m|; |n|) = p (khác 1), trái với giả sử

=> \(\sqrt{5}\) là số vô tỉ (điều phải chứng tỏ)

12 tháng 9 2017

25 tháng 3 2018

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ

20 tháng 10 2019

                                                      Bài giải

a, Ta có :

\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ

b, Ta có :

\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ

22 tháng 10 2019

♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。

chứng minh them \(\sqrt{2}\)\(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :

https://olm.vn/hoi-dap/detail/227642288657.html

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

20 tháng 11 2021

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ

9 tháng 11 2016

Giả sử x+y=z là một số hữu tỉ, khi đó ta có y=z-x

vì z và x thuộc Q nên z-x thuộc Q, do đó y thuộc Q. Điều này trái với đề bài.

Vậy x+y là số vô tỉ

Chứng minh tương tự x-y là số vô tỉ

Giả sử x.y=z là một số hữu tỉ, khi đó ta có y=z\x. Vì x, y thuộc Q nên z\x thuộc Q,

do đó y thuộc Q. Điều này trái với đề bài. Vậy x.y là một số vô tỉ

Chứng minh tương tự x:y là số vô tỉ

5 tháng 10 2020

Ta có: \(\sqrt{5}\) là 1 số vô tỉ

=> \(2+\sqrt{5}\) là 1 số vô tỉ

=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ

=> đpcm

5 tháng 10 2020

Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)

\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)

\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))

Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ

27 tháng 10 2016

Bài giải

Giả sử x + y = z là một số hữu tỉ. Như vậy ta có y = z - x. Nhưng hiệu của hai số hữu tỉ. Suy ra y là số hữu tỉ. Điều này trái với đầu bài (y là số vô tỉ)

Vậy x + y là một số vô tỉ

Trường hợp x . y chứng minh tương tự