Tìm GTNN của biểu thức \(B=\frac{16x^2+4x+1}{2x}\) với x>0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{16x^2+4x+1}{2x}=8x+2+\frac{1}{2x}\)
Áp dụng bđt Cauchy : \(8x+\frac{1}{2x}\ge2\sqrt{8x.\frac{1}{2x}}=4\)
\(\Rightarrow A\ge6\)
Vậy MIN A = 6 \(\Leftrightarrow\begin{cases}x>0\\8x=\frac{1}{2x}\end{cases}\) \(\Leftrightarrow x=\frac{1}{4}\)
Cách khác nhanh hơn:
Áp dụng BĐT AM-GM:
\(16x^2+4x+1\ge3\sqrt[3]{4^2.x^2.4x}=3.4x=12x\)
Suy ra \(A\ge\frac{12x}{2x}=6\).
Đẳng thức xảy ra khi \(16x^2=4x=1\Leftrightarrow x=\frac{1}{4}\)
________________
P/S: Cách này nhanh hơn avf không đòi hỏi phải tính toán nhiều :D
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
HD:Có P=2x+1/x^2=x+x+1/x ^2>=3 căn bậc 3 (x.x.1/x^2)=3.(x>0)
MinP=3<=>x=1/x^2<=>x=1.
Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)
\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)
Vì \(a>0,b>0\)
Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)
Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0
\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)
\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)
\(P\ge4+52=56\)
\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)
a) \(M=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1\)\(-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}\)\(+\frac{\sqrt{x}-2x-\sqrt{x}}{\sqrt{x}}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)
\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\) và \(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :
\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)
Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)