tìm gtnn của A biết A=|x-2016|+|x-1|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2
ta có A=\(\left|2016-x\right|+\left|x-1\right|\ge\left|2016-x+x-1\right|=2015\)
=>A >=2015
dấu = xảy ra <=> (2016-x)(x-1)>=0 <=>(x-2016)(x-1)<=0 <=>2016>=x>=1
Ta có :
M = | x - 2015 | + | x - 2016 | + | x - 2017 |
M = | x - 2015 | + | x - 2016 | + | 2017 - x |
M = | x - 2015 | + | x - 2016 | + | 2017 - x | \(\ge\)| x - 2015 + 2017 - x | + | x - 2016 | = 2 + | x - 2016 | \(\ge\)2
Dấu = xảy ra \(\Leftrightarrow\)( x - 2015 )( 2017 - x )\(\ge\)0 ( loại ) và x - 2016 = 0 \(\Rightarrow\)x = 2016 ( chọn )
Vậy : Min M = 2 \(\Leftrightarrow\)x = 2016
Áp dụng : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có : \(A=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|1-x\right|\ge\left|x-2016+1-x\right|\)
\(=\left|2017\right|=2017\)
\(\Rightarrow Min_A=2017\)
Áp dụng:\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:A=\(\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|1-x\right|\ge\left|x-2016+1-x\right|=\left|2017\right|=2017\)
\(\Rightarrow GTNN\) của A là:2017
Có \(\left|x-2016\right|=\left|2016-x\right|\)
\(\Rightarrow A=\left|2016-x\right|+\left|x-1\right|\ge\left|2016-x+x-1\right|\)
\(\Rightarrow A\ge2015\)
\(\Rightarrow Min_A=2015\Leftrightarrow\left(2016-x\right)\left(x-1\right)\ge0\)
Ta có bảng xét dấu :
x x-1 2016-x (x-1)(2016-x) 1 2016 0 0 _ _ + + + + _ _ 0 0 +
\(\Rightarrow1\le x\le2016\)
Vậy ...