K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

A = 2x2 - 8x + 2017

A = 2x2 - 4x - 4x + 8 + 2009

A = 2x.(x - 2) - 4.(x - 2) + 2009

A = (x - 2)(2x - 4) + 2009

A = 2.(x - 2)2 + 2009 \(\ge2009\)

Dấu "=" xảy ra khi (x - 2)2 = 0

=> x - 2 = 0

=> x = 2

Vậy GTNN của A là 2009 khi x = 2

4 tháng 11 2016

A = 2x2 - 8x + 2017

A = 2x2 - 4x - 4x + 8 + 2009

A = 2x.(x - 2) - 4.(x - 2) + 2009

A = (x - 2)(2x - 4) + 2009

A = 2.(x - 2)2 + 2009 ≥2009≥2009

Dấu "=" xảy ra khi (x - 2)2 = 0

=> x - 2 = 0

=> x = 2

Vậy GTNN của A là 2009 khi x = 2

4 tháng 11 2016

GTNN là 2009

7 tháng 7 2017

Sorry nhá mk nhầm : 

Ta có : A = 4x2 - 4x + 2017

=> A = (2x)2 - 4x + 1 + 2016

=> A = (2x - 1)2 + 2016

Mà ; (2x - 1)2 \(\ge0\forall x\)

Nên :  A = (2x - 1)2 + 2016 \(\ge2016\forall x\)

Vậy Amin = 2016 , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

7 tháng 7 2017

Ta có : A = 4x2 - 4x + 2017 

=> A = (2x)2 - 4x + 4 + 2013

=> A = (2x - 2)+ 2013

Mà : (2x - 2)\(\ge0\forall x\)

Nên A = (2x - 2)+ 2013 \(\ge2013\forall x\)

Vậy Amin = 2013 , dấu "=" sảy ra khi va chỉ khi x = 1

7 tháng 6 2018

Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4? 

7 tháng 6 2018

mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi

25 tháng 8 2021

=2(x^2 -2x1/4 +1/16)-1/8 +2017

=2(x-1/4)^2 +16135/8

MinB=16135/8 khi x =1/4

Ta có: \(B=2x^2-x+2017\)

\(=2\left(x^2-\dfrac{1}{2}x+\dfrac{2017}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{16135}{16}\right)\)

\(=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{16135}{8}\ge\dfrac{16135}{8}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

9 tháng 12 2016

Tử \(x^4+2x^3+8x+16\)

\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)

\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)

Mẫu \(x^4-2x^3+8x^2-8x+16\)

\(=x^4-2x^3+4x^2+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)

Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)

Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy Min=0 khi x=-2

 

3 tháng 1 2017

A = \(\frac{x^2+2x+2017}{2017x^2}\)\(\frac{\left(x+1\right)^2+2016}{2017x^2}\)

Ta có: (x+1)2 \(\ge0\)với \(\forall x\)Dấu "=" xảy ra khi x= -1

2017x2 \(\ge0\)với \(\forall x\)Dấu "=" xảy ra khi x = 0

Suy ra \(\frac{\left(x+1\right)^2}{2017x^2}\)\(\ge\)0 với \(\forall x\)

<=> \(\frac{\left(x+1\right)^2+2016}{2017x^2}\)\(\ge\)2016 với \(\forall x\)

Mình nghĩ thế! 

3 tháng 1 2017

\(A\ge\frac{2016}{2017^2}\)đẳng thức khi \(x=-4034\)