K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

4 phần tử?

[-3;-1/3)U(1/3;3]?

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải: 

$M\in d_1$ nên gọi tọa độ của $M$ là $(2a+3,a)$

Khoảng cách từ $M$ đến $(d_2)$ là:\(\frac{|2a+3+a+1|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow |3a+4|=1\Leftrightarrow 3a+4=\pm 1\)

\(\Leftrightarrow a=-1; a=\frac{-5}{3}\)

Thay vào ta có tọa độ của điểm $M$

30 tháng 1 2021

Lấy \(M\in d_1\Rightarrow M\left(2y+3;y\right)\)

Ta có: \(d\left(M;d_2\right)=\dfrac{1}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2y+3+y+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|3y+4\right|}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow\left|3y+4\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}3y+4=1\\3y+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(y=1\Rightarrow M\left(5;1\right)\)

\(y=-\dfrac{5}{3}\Rightarrow M\left(-\dfrac{1}{3};-\dfrac{5}{3}\right)\)

28 tháng 9 2021

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(đk:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

Để A nguyên thì: \(x+\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x+\sqrt{x}+1\in\left\{1;2\right\}\)

+ Với \(x+\sqrt{x}+1=1\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=0\left(tm\right)\left(do.\sqrt{x}+1\ge1>0\right)\)

+ Với \(x+\sqrt{x}+1=2\)

\(\Leftrightarrow\left(x+\sqrt{x}+\dfrac{1}{4}\right)=\dfrac{5}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\\sqrt{x}+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\\\sqrt{x}=-\dfrac{\sqrt{5}+1}{2}\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\)

Vậy \(S=\left\{1;\dfrac{3-\sqrt{5}}{2}\right\}\)

a: d//d1

=>m-2=-m và m+7<>2m-3

=>m=1

b: d trùng với d2

=>m-2=-m^2 và m+7=-2m+1

=>m=-2 và m^2+m-2=0

=>m=-2

d: d vuông góc d4

=>-1/6(m+3)(m-2)=-1

=>(m+3)(m-2)=6

=>m^2+m-6-6=0

=>m^2+m-12=0

=>m=-4 hoặc m=3

c: Thay y=1/3 vào d3, ta được:

-2/3x+5/3=1/3

=>-2/3x=-4/3

=>x=2

Thay x=2 và y=1/3 vào (d), ta được:

2(m-2)+m+7=1/3

=>3m+3=1/3

=>3m=-8/3

=>m=-8/9