K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

Ta có : \(D=\left(\left|x-1\right|+\left|x-9\right|\right)+\left(\left|x-2\right|+\left|x-8\right|\right)+\left(\left|x-3\right|+\left|x-7\right|\right)+\left(\left|x-4\right|+\left|x-6\right|\right)+\left|x-5\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , đẳng thức xảy ra khi a,b cùng dấu được

\(\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)

Tương tự : \(\left|x-2\right|+\left|x-8\right|\ge6\)

\(\left|x-3\right|+\left|x-7\right|\ge4\)

\(\left|x-4\right|+\left|x-6\right|\ge2\)

\(\left|x-5\right|\ge0\)

Cộng các BĐT trên theo vế được \(D\ge0+2+4+6+8=20\)

Dấu đẳng thức xảy ra khi đồng thời các BĐT trong trị tuyệt đối cùng dấu (Mình không liệt kê ra vì dài) , và x - 5 = 0 => x = 5 thỏa mãn

Vậy D đạt giá trị nhỏ nhất bằng 20 khi x = 5

 

2 tháng 11 2016

Có: \(\left|x-1\right|\ge x-1;\left|x-2\right|\ge x-2;\left|x-3\right|\ge x-3;\left|x-4\right|\ge x-4\)

\(\left|x-5\right|\ge0\)

\(\left|x-6\right|\ge6-x;\left|x-7\right|\ge7-x;\left|x-8\right|\ge8-x;\left|x-9\right|\ge9-x\)

Do đó, \(D\ge\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+\left(x-4\right)+0+\left(6-x\right)+\left(7-x\right)+\left(8-x\right)+\left(9-x\right)\)

hay \(D\ge20\)

Dấu "=" xảy ra khi \(\begin{cases}x-4\ge0\\x-5=0\\6-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge4\\x=5\\x\le6\end{cases}\)=> x = 5

Vậy GTNN của D là 20 khi x = 5

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 *...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

\(A=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}=\dfrac{1}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{1}{x^2-2x-3}=\dfrac{x^2-2x-3+4}{x^2-2x-3}\)

Để A nhỏ nhất thì x^2-2x-3 lớn nhất

=>KHông có giá trị nhỏ nhất của A nha bạn

 

2 tháng 2 2017

Bạn giải cụ thể ra đc không?

3 tháng 11 2019
A=x(x-3)(x-1)(x-2)-9 =(x^2-3x)(x^2-3x+2)-9 Đặt(x^2-3x+1)=y A=(y-1)(y+1)-9 =y^2-1-9 =y^2-10 =x^2-3x+1-9 =x^2-3x-8 Hok tốt
NV
12 tháng 1 2024

a.

\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)

\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)

Áp dụng BĐT trị tuyệt đối:

\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)

\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)

\(\Rightarrow A_{min}=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)

Câu b đã giải bên dưới

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1