Tìm a,b,c để :
\(a^2-2ab+b^2+4b+4c^2-4c+6=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lớp 6 gì kinh thế cái này lớp 8
M=a^3+b^3+ab
M=(a+b)[(a+b)^2-3ab)]+ab=1-2ab
a+b=1=> b=1-a
M=1-2a(1-a)=1+2a^2-2a
M=2.[(a^2-a+1/2)]+1
-=2(a-1/2)^2+1/2
GTLN của M=1/2 khi a=b=1/2
\(a^2+2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
Mà \(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)
= (a+1)2 +(b+2)2 +(2c-1)2 =0
=> a = -1
b = -2
c = 1/2
đk cần và đủ giỏi toán IQ>100 + chăm
<=>a^2-2a+b^2+4b+4c^2-4c+1+4+1=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)2+(b+2)2+(2c-1)2=0
<=>(a-1)^2=0 hoặc(b+2)^2=0 hoặc (2c-1)^2=0
+,(a-1)^2=0<=>a-1=0<=>a=1
+,(b+2)^2=0<=>b+2=0<=>b=-2
+,(2c-1)^2=0<=>2c-1=0<=>2c=1<=>c=1/2
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)
\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)
Vì : \(\left(a-1\right)^2\ge0\) với mọi a
\(\left(b+2\right)^2\ge0\) với mọi b
\(\left(2c-1\right)^2\ge0\) với mọi c
=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c
Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)
Vậy........
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+1\right)^2+\left(2c-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+1=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=\frac{1}{2}\end{cases}}\)
Ta có :
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(x^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c+1\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a-1=0\\b+2=0\\2c+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}a=1\\b=-2\\c=-\frac{1}{2}\end{array}\right.\)
Vậy ..................
bạn chép sai đề rồi