K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

a) Xét ΔABC và ΔHBA có

ˆBAC=ˆBHA(=900)BAC^=BHA^(=900)

ˆABHABH^ chung

Do đó: ΔABC∼ΔHBA(g-g)

b) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2BC2=AB2+AC2

⇔BC2=202+152=625⇔BC2=202+152=625

hay BC=√625=25cmBC=625=25cm

Ta có: ΔABC∼ΔHBA(cmt)

ACHA=BCBAACHA=BCBA

hay 15AH=252015AH=2520

⇔AH=15⋅2025=30025=12cm⇔AH=15⋅2025=30025=12cm

Vậy: BC=25cm; AH=12cm

d) Ta có: ˆCAH+ˆBAH=ˆBACCAH^+BAH^=BAC^(tia AH nằm giữa hai tia AB,AC)

ˆCAD=900−ˆBAHCAD^=900−BAH^(1)

Ta có: ΔAHB vuông tại H(AH⊥BC)

nên ˆABH+ˆBAH=900ABH^+BAH^=900(hai góc nhọn phụ nhau)

hay ˆABC=900−ˆBAHABC^=900−BAH^(2)

Từ (1) và (2) suy ra ˆCAD=ˆABCCAD^=ABC^

Ta có: CD//AB(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: CD⊥AC(định lí 2 từ vuông góc tới song song)

Xét ΔBAC và ΔACD có

ˆABC=ˆCADABC^=CAD^(cmt)

ˆBAC=ˆACD(=900)BAC^=ACD^(=900)

Do đó: ΔBAC∼ΔACD(g-g)

ABAC=ACCDABAC=ACCD

hay AC2=AB⋅DCAC2=AB⋅DC(đpcm)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔADH có \(\widehat{DAH}=\widehat{DHA}\)

nên ΔADH cân tại D

c: Xét ΔABC có

H là trung điểm của BC

HD//AC

DO đó: D là trung điểm của AB

Xét ΔABC có 

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tại G

Do đó: G là trọng tâm

=>B,G,E thẳng hàng

a: Xét ΔABC có 

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC

Xét ΔADE có AD=AE

nên ΔADE cân tại A

b: Xét ΔABC có 

D là trung điểm của AB

DF//AC

Do đó: F là trung điểm của BC

Xét ΔABC có

D là trung điểm của AB

F là trung điểm của BC

Do đó: DF là đường trung bình

=>DF=AE

mà AE=AD

nên DF=AD

=>ΔADF cân tại D

c: Xét tứ giác ADFE có 

DF//AE

DF=AE

Do đó: ADFE là hình bình hành

mà AD=AE

nên ADFE là hình thoi

=>AF⊥DE

26 tháng 1 2022

- Toàn là kiến thức lớp 8 anh/chị ơi :)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCAB vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(CH\cdot CB=AC^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCDB vuông tại C có CA là đường cao ứng với cạnh huyền DB, ta được:

\(AD\cdot AB=CA^2\left(2\right)\)

Từ (1) và (2) suy ra \(CH\cdot CB=AD\cdot AB\)

10 tháng 10 2022

nho thay co giup em voi em dungf tu giac noi tiep khong dung

a: Xet ΔABC và ΔEBA có

góc BAC=góc BEA
góc B chung

=>ΔABC đồng dạng với ΔEBA

b: ΔABC vuông tại A có AE vuông góc BC

nên AB^2=BE*BC

c: BF là phân giác

=>AF/AB=CF/BC

=>AF/3=FC/5=4/8=1/2

=>AF=1,5cm

a: Xét ΔBAC có

N là trung điểm của AB

NI//BC

Do đó: I là trung điểm của AC

a: Xét ΔAHE và ΔADE có 

AH=AD

HE=DE

AE chung

Do đó: ΔAHE=ΔADE

24 tháng 4 2023

loading...  

a) Do AD là đường phân giác của ∠BAC

⇒ BD/CD = AB/AC = 9/12 = 3/4

b) Xét hai tam giác vuông: ∆ABC và ∆EDC có:

∠C chung

⇒ ∆ABC ∽ ∆EDC (g-g)

a: BD/CD=AB/AC=3/4

b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

9 tháng 9 2021

b) xét tg DHC và tg BAC có A=H =90 độ

                                             C chung

=> tg DHC ~ tg BAC( g.g)

=> \(\dfrac{CH}{AC}=\dfrac{CD}{BC}=>CH.CB=CD.CA\)

c) ta có AC=AD+DC   => DC=AC-AD=20-9,4=10,6 cm

tg DHC~ tg BAC => \(\dfrac{SDHC}{SBAC}=\left(\dfrac{DC}{BC}\right)^2=\left(\dfrac{10,6}{25}\right)^2\)

=> SDHC= SBAC.\(\left(\dfrac{10,6}{25}\right)^2\)

Chỗ này bạn thay số và tính nhé

9 tháng 9 2021

a) Xét ABC cos A=90 độ=> BC2=AC2+AB2( dl Py ta go)

=> BC2= 202+152=625 => BC=25 cm

    Xét tg ABC có BD pg B 

\(\dfrac{AB}{BC}=\dfrac{AD}{DC}=>\dfrac{AB}{BC+AB}=\dfrac{AD}{AD+DC}< =>\dfrac{15}{15+20}=\dfrac{AD}{BC}< =>\dfrac{15}{35}=\dfrac{AD}{25}=>AD=\dfrac{15.25}{35}~~9,4cm\)

29 tháng 12 2023

a: Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

Hình bình hành AMHN có \(\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Ta có: AMHN là hình bình hành

=>HM//AN và HM=AN

Ta có: HM//AN

N\(\in\)AE

Do đó: HM//ND

Ta có: HM=NA

NA=ND

Do đó: HM=ND

Xét tứ giác MHDN có

MH//DN

MH=DN

Do đó: MHDN là hình bình hành

c: Gọi O là giao điểm của AH và NM

Ta có: ANHM là hình chữ nhật

=>AH=MN và AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Ta có: ΔAEH vuông tại E

mà EO là đường trung tuyến

nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)

Xét ΔNEM có

EO là đường trung tuyến

\(EO=\dfrac{NM}{2}\)

Do đó: ΔNEM vuông tại E

=>NE\(\perp\)ME