K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

3n-1\(⋮\)n+1

3(n+1)\(⋮\)n+1

3n-1+3(n+1)\(⋮\)n+1

3n-1+3n-3\(⋮\)n+1

4\(⋮\)n+1

\(\Rightarrow\)n+1={1;2;4}

\(\Rightarrow\)n={0;1;3}

2 tháng 11 2016

Thêm vào cuối

n={0;1;3}

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

29 tháng 11 2021

a, n+5 chia hết cho n+2
    n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
       n+5-n-2 chia hết cho 2
       3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
    n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...

29 tháng 11 2021

cảm ơn bạn

2 tháng 2 2018

hơi dài đấy 3

a,

2n+1\(⋮\)2n-3

2n-3+4\(⋮\)2n-3

\(_{\Rightarrow}\)4\(⋮\)2n-3

2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)

2n-3124-1-2-4
2n45721-1
n2  1  

vậy n\(\in\)(2;1)

b;

3n+2\(⋮\)3n-4

3n-4+6\(⋮\)3n-4

=>6\(⋮\)3n-4

3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)

3n-41236-1-2-3-6
3n56710321-2
n 3 5 1 -1

vậy n\(\in\)(3;5;-1;1)

DD
8 tháng 10 2021

\(\left(3n-11\right)⋮\left(11-2n\right)\)

\(\Rightarrow\left(6n-22\right)⋮\left(11-2n\right)\)

Ta có: \(6n-22=6n-33+11=3\left(2n-11\right)+11⋮\left(11-2n\right)\)

\(\Leftrightarrow11⋮\left(11-2n\right)\)mà \(n\inℕ\)

suy ra \(11-2n\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)

\(\Leftrightarrow n\in\left\{11,6,5,0\right\}\).

Thử lại đều thỏa mãn. 

4 tháng 6 2017

Ta có :3n chia hết cho n - 1 

<=> 3n - 3 + 3 chia hết cho n - 1

<=> 3.(n - 1) + 3 chia hết cho n - 1

=> 3 chia hết cho n - 1

=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

n - 1-3-113
n-2024
4 tháng 6 2017

Ta có : 8 : n - 2 

<=> n - 2 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}

Ta có  bảng : 

n - 2 -8-4-2-11248
n-6-20134620
20 tháng 11 2019

a) Ta có:

\(n^2+3n+2\)

\(=n^2+n+2n+2\)

\(=n\left(n+1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n+2\right)\)

Vì \(n+1⋮n+1\)

\(\Rightarrow n+2⋮n+1\)

Ta có:

\(n+2=n+1+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)

\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)

Vậy \(n=0\)