Tìm số nguyên n sao cho n,n+1 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
n và n+1 là số chính phương nên \(\)\(\left\{{}\begin{matrix}n\ge0\\n+1\ge0\end{matrix}\right.\Rightarrow n\ge0\)
Vì n và n+1 là số chính phương và n và n+1 là 2 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n=0\\n+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\)
Vì \(n\ge0\)
Nên n=0
Vậy ....
#include <bits/stdc++.h>
using namespace std;
long long a[1000006];
long long n;
int main()
{
for(int i=1;i<=1000006;i++){
a[i]=i*i;
}
cin>>n;
for(int i=1;i<=n;i++){
if(a[i]%n==0){cout<<a[i]/n;break;}
}
return 0;
}
Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.
Đặt \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)
\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\) (1)
Đặt \(t=n^2+8n\) Vì n > 0 nên t > 0
Vì A là số chính phương đặt A=k2 \(\left(k\in N\right)\) Vì t>0 => k > 0
(1) \(\Rightarrow\) \(t\left(t+7\right)=k^2\)
\(\Leftrightarrow4t^2+28t-4k^2=0\)
\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)
\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)
\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)
Xét các ước của 49 với chú ý rằng \(2t+7-2k< 2t+7+2k\) vì k > 0 từ đó dễ dàng tìm được t
Sau đó ta tìm được các giá trị của n.
Ta có (n;n + 1) = 1
=> n và n + 1 là số chình phương khi
n(n + 1) chình phương
Đặt số chính phương đó là m2 ( m \(\inℤ\))
Khi đó n(n + 1) = m2
=> n2 + n = m2
=> 4n2 + 4n = 4m2
=> 4n2 + 4n + 1 - 4m2 = 1
=> 4n2 + 2n + 2n + 1 - (2m)2 = 1
=> 2n(2n + 1) + (2n + 1) - (2m)2 = 1
=> (2n + 1)2 - (2m)2 = 1
=> (2n + 1)2 - (2n + 1).2m + 2m(2n + 1) - (2m)2 = 1
=> (2n + 1)(2n + 1 - 2m) + 2m(2n + 1 - 2m) = 1
=> (2n + 2m + 1)(2n - 2m + 1) = 1
Vì \(n;m\inℤ\Rightarrow\hept{\begin{cases}2n+2m+1\inℤ\\2n-2m+1\inℤ\end{cases}}\)
mà 1 = 1.1 = (-1).(-1)
Lập bảng xét các trường hợp
Vậy n = 0