the maximum value of \(\frac{\left(x^2+15\right)}{x^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
- Tìm giá trị nhỏ nhất :
Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)
\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) .
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)
Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)
a) Ta có :
\(\sqrt{5X-1}\ge0\) => \(\sqrt{5X-1}+\left(1,1\right)^2\ge\left(1,1\right)^2\) Vậy GTNN là 1,21
b) Ta có
\(\sqrt{11-3X}\ge0\) =>\(-\sqrt{11-3X}\le0\) =>\(1,21-\sqrt{11-3X}\le1,21\) GTLN là 1,21
Lời giải:
Vì \(1< x< 3\Rightarrow \left\{\begin{matrix}
|x-3|=|3-x|=3-x\\
|x-1|=x-1\end{matrix}\right.\). Khi đó:
\(A=\frac{|x-3|}{x-3}-\frac{|x-1|}{1-x}+|x-1|+|3-x|\)
\(=\frac{3-x}{x-3}-\frac{x-1}{1-x}+x-1+3-x\)
\(=-1-(-1)+2=2\)
Vậy giá trị của $A$ là $2$
\(\frac{x^2+15}{x^2+3}\)
\(=\frac{x^2+3+12}{x^2+3}\)
\(=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}\)
\(=1+\frac{12}{x^2+3}\)
\(x^2\ge0\)
\(x^2+3\ge3\)
\(\frac{12}{x^2+3}\le4\)
\(1+\frac{12}{x^2+3}\le5\)
ĐS: 5