Cho a,b,c,d thoả mãn:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{d+a+b}{c}\)
Tìm: \(B=\left(1+\frac{a+b}{c+d}\right)\cdot\left(1+\frac{b+c}{d+d}\right)\cdot\left(1+\frac{c+d}{a+b}\right)\cdot\left(1+\frac{d+a}{b+c}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
(a+b+c/b+c+d)^3=(a+b+c/b+c+d).(a+b+c/b+c+d).(a+b+c/b+c+d)=a/b.b/c.c/d
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
$\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}$
Cộng 2 vào mỗi đẳng thức ta có:\(\begin{align} & 2+\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2 \\ & \Leftrightarrow \dfrac{a+b+c+d}{d}=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}\Rightarrow a=b=c=d \\ \end{align}\)
Thay vào P ta được: $P=\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)={{3}^{4}}=81$
Đặt \(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{d}+1\right)\left(\frac{d}{a}+1\right)\)
\(\frac{-a+b+c+d}{a}=\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)( tc dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}-a+b+c+d=2a\\a-b+c+d=2b\\a+b-c+d=2c\end{cases}}\)và \(a+b+c-d=2d\)
\(\Rightarrow\hept{\begin{cases}a+b+c+d=4a\\a+b+c+d=4b\\a+b+c+d=4c\end{cases}}\)và \(a+b+c+d=4d\)
\(\Rightarrow4a=4b=4c=4d\)
\(\Rightarrow a=b=c=d\)thay vào bt A ta được:
\(A=2.2.2.2=16\)
b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\); \(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)
Cộng các bĐT trên
=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Ta có Với \(0< \frac{x}{y}< 1\)
=> \(\frac{x}{y}< \frac{x+z}{y+z}\)
Áp dụng ta có
\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)
Vậy 2<B<3