Cho: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\)
Tìm các số hữu tỉ x để A là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)
Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)
Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng :
\(\sqrt{x}+1\) | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -6 (loại) | -2(loại | 0 | 4 |
x | 0 | 2 |
bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
Ta có \(M=\frac{\sqrt{a}+2}{\sqrt{a}-2}=\frac{\sqrt{a}-2}{\sqrt{a}-2}+\frac{4}{\sqrt{a}-2}=1+\frac{4}{\sqrt{a}-2}\)
Để M nguyên thì \(\frac{4}{\sqrt{a}-2}\)nguyên
Ta có bảng sau:
\(\sqrt{a}\)-2 | 1 | -1 | 2 | -2 | 4 | -4 |
a | Loại | 1 | 16 | 0 | Loại | Loại |
Vậy tại a là 0;16;2 thì M nguyên
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Do A nguyên nên \(\frac{4}{\sqrt{x}-2}\) nguyên
\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)
Mà \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6\right\}\)
\(\Rightarrow x\in\left\{9;1;16;0;36\right\}\)
Vậy \(x\in\left\{9;1;16;0;36\right\}\)
bn ơi lm thế thì thành x là số nguyên mất rồi, bn xem lại giùm mình nhé