Mọi người cho mình hỏi 3 bài này với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+.....+3^{99}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=39+3^3\left(3+3^2+3^3\right)+........+3^{96}\left(3+3^2+3^3\right)\)
\(=39+3^3\cdot39+...+3^{96}\cdot39\)
\(=39\left(1+3^3+....+3^{96}\right)\)
Vì \(39⋮13\Rightarrow39\in B\left(13\right)\)
Đặt độ dài cạnh đáy là a.
Độ dài "cạnh kia" sẽ là 1/5 * a
Vậy chu vi của hình bình hành sẽ là (a + 1/5 * a) * 2 = 384 cm
Vậy 6/5 a = 192 cm.
Suy ra độ dài cạnh đáy là 192 / 6 * 5 = 160 cm.
Vậy diện tích hình bình hành là 160 * 20 = 3200 cm2
Đáp số: 3200cm2 (Mình giải thích hơi khó hiểu nhưng sau này bạn học phương trình thì cũng sẽ hiểu thôi)
Ht~~~
\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{24\cdot12}{24+12}=8\Omega\)
\(I=\dfrac{U}{R}=\dfrac{12}{8}=1,5A\)
\(P=\dfrac{U^2}{R}=\dfrac{12^2}{8}=18W\)
\(Q_{tỏa1}=A_1=U_1\cdot I_1\cdot t=12\cdot\dfrac{12}{24}\cdot1\cdot3600=21600J\)
\(Q_{tỏa2}=A_2=U_2\cdot I_2\cdot t=12\cdot\dfrac{12}{12}\cdot1\cdot3600=43200J\)
Mình cũng nghĩ thế nhưng mới đọc 1 bài giải toán trên mạng thì -1 :3 dư 2 cơ. Mình chả hiểu
Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3
\(\Rightarrow\)p có dạng 3k+1 và 3k+2
+) Với p=3k+1
Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9
Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )
+) Với p=3k+2
Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )
4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15
Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )
Vậy ...
_HT_