tim x , y :
/ x + 3y -1 / + / 2y - \(\frac{1}{2}\) /^200 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+2xy+y^2+y^2-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y-1=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=-y=-1\end{cases}}\)
Vậy x=-1 y=1
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=1\end{cases}\Rightarrow}x=-1;y=1}\)
b) \(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow2.\left(x-1\right)^2+3.\left(x+y\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\) \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow y=-x=-1\)
\(\left(z+2\right)^2=0\Rightarrow z+2=0\Rightarrow z=-2\)
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
a)
\(2x=3y\Rightarrow y=\frac{2x}{3}\)
\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)
(x,y,z)=(15/7,10/7,6/7)
(x,y,z)=(-15/7,-10/7,-6/7)
Vì: \(\begin{cases}\left|x+3y-1\right|\ge0\\\left|2y-\frac{1}{2}\right|^{200}\ge0\end{cases}\)\(\Rightarrow\left|x+3y-1\right|+\left|2y-\frac{1}{2}\right|^{200}\ge0\)
Nên: \(\left|x+3y-1\right|+\left|2y-\frac{1}{2}\right|^{200}=0\)
\(\Leftrightarrow\begin{cases}x+3y-1=0\\2y-\frac{1}{2}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1-3y=1-3\cdot\frac{1}{4}=\frac{1}{4}\\y=\frac{1}{4}\end{cases}\)
\(\Leftrightarrow x=y=\frac{1}{4}\)
\(\left|x+3y-1\right|+\left|2y-\frac{1}{2}\right|^{200}=0\)
\(\Rightarrow\left|x+3y-1\right|=0\) và \(\left|2y-\frac{1}{2}\right|^{200}=0\)
+) \(\left|2y-\frac{1}{2}\right|^{200}=0\)
\(\Rightarrow2y-\frac{1}{2}=0\)
\(\Rightarrow2y=\frac{1}{2}\)
\(\Rightarrow y=\frac{1}{4}\)
+) \(\left|x+3y-1\right|=0\)
\(\Rightarrow x+3y-1=0\)
\(\Rightarrow x+3.\frac{1}{4}=1\)
\(\Rightarrow x+\frac{3}{4}=1\)
\(\Rightarrow x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4},y=\frac{1}{4}\)