K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Gọi E là trung điểm KL; I là trung điểm AG

\(\left\{{}\begin{matrix}KE=EL\\BD=DC\end{matrix}\right.\Rightarrow ED\) là đtb hthang \(BCLK\left(BK//LC.do.cùng.\perp KL\right)\)

\(\Rightarrow ED=\dfrac{BK+CL}{2}\Rightarrow2ED=BK+CL\left(1\right)\)

Vì G là trọng tâm tam giác ABC nên \(GD=\dfrac{1}{2}AG\)

Mà \(AI=IG=\dfrac{1}{2}AG\) nên \(GD=AI=IG\)

Ta có \(ED//BK//LC\left(t/c.đtb\right)\Rightarrow ED\perp KL\left(BK\perp KL\right)\)

Áp dụng định lí Ta-lét cho \(AH//ED\left(\perp KL\right)\) ta có

\(\dfrac{AH}{ED}=\dfrac{AG}{GD}=2\Rightarrow AH=2ED\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AH=BK+CL\)

18 tháng 11 2023

1: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

2: \(\widehat{EDM}=90^0\)

=>\(\widehat{EDH}+\widehat{MDH}=90^0\)

=>\(\widehat{EAH}+\widehat{MDH}=90^0\)

=>\(\widehat{MDH}+\widehat{HAC}=90^0\)

=>\(\widehat{MDH}+\widehat{ABC}=90^0\)

mà \(\widehat{MHD}+\widehat{MBD}=90^0\)

nên \(\widehat{MDH}=\widehat{MHD}\)

=>MD=MH

\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)

\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)

mà \(\widehat{MDH}=\widehat{MHD}\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MD=MB

=>MB=MH

=>M là trung điểm của BH

\(\widehat{NED}=90^0\)

=>\(\widehat{NEH}+\widehat{DEH}=90^0\)

=>\(\widehat{NEH}+\widehat{DAH}=90^0\)

mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{NEH}+\widehat{C}=90^0\)

mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)

nên \(\widehat{NEH}=\widehat{NHE}\)

=>NE=NH

\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)

\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)

mà \(\widehat{NHE}=\widehat{NEH}\)

nên \(\widehat{NEC}=\widehat{NCE}\)

=>NE=NC

mà NH=NE

nên NC=NH

=>N là trung điểm của HC

15 tháng 9 2019

bạn vẽ hình ra thì đọc mới hiểu nha !

a) Ta có : BB' vuông góc với d ( giả thiết ) }

               MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )

               CC' vuông góc với d ( giả thiết )  }

Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :

 M là trung điểm BC ( AM là trung tuyến - giả thiêt ) } 

 MM' // BB' ; MM' // CC' ( chứng minh trên )             } => M' là trung điểm BB'CC' ( định lí )

Xét hình thang BB'C'C có :

 M là trung điểm BC ( AM là trung tuyến ) }

M' là trung điểm B'C' ( chứng minh trên )  } => MM' là đường trung bình của hình thang BB'C'C ( định lí )

                                                                     => MM' = BB' + CC' / 2 ( định lí )

ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!

9 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AE // OC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE