K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

A B C D N M E kẻ AE//NB và AE=NB. nôi B voi E ta đc hnh AEBN =>vtNE=2vtNM,vtAE=vtNB. do vtNE=vtNA+vtAE nên 2vtNM=vtNA+vtNB (1) mà vtNA+vtNB=vtND+vtDA+vtNC+vtCB=vtDA+vtCB (2) từ (1) và (2) => 2vtNM=vtDA+vtCB hay 2vtMN=vtAD+vtBC (3) vtBC+vtAD=vtBD+vtDC+vtAC+vtCD=vtBD+vtAC (4) từ (3) và(4)=> 2vtMN=vtAD+vtBC=vtBD+vtAC

5 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có MPNQ là hình bình hành vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (1) và (2) ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

là đẳng thức cần chứng minh

11 tháng 9 2021

MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang

Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE). 
Lại có: LM // DA (2) (đường TB tam giác EAD) 
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân

6 tháng 10 2018

Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD

Mà AB = CD (gt)

\(\Rightarrow KN=NI=IM=MK\)

\(\Rightarrow KNIM\)là hình thoi

Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)

Chúc bạn học tốt.

27 tháng 10 2021

Xét ΔABC có 

E là trung điểm của AB

N là trung điểm của AC

Do đó: EN là đường trung bình của ΔABC

Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có

M là trung điểm của BD

F là trung điểm của CD

Do đó: MF là đường trung bình của ΔBDC

Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

M là trung điểm của BD

Do đó: EM là đường trung bình của ΔABD

Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)

Từ (1) và (2) suy ra EN//MF và EN=MF

Từ (1) và (3) suy ra EN=EM

Xét tứ giác ENFM có

EN//MF

EN=MF

Do đó: ENFM là hình bình hành

mà EN=EM

nên ENFM là hình thoi

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy