Tìm x biết:
\(x+2\sqrt{2x^2}+2x^3=0\)
Giải nhanh dùm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\text{Ta có: với mọi}\) \(x\) \(\text{thì}\) \(\left(x+2018\right)^2\ge0\)
\(\Rightarrow\orbr{\begin{cases}x+1>0;x-4< 0\\x+1< 0;x-4>0\end{cases}}\)
TH1: \(\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}\text{}\Rightarrow\hept{\begin{cases}x>-1\\x< 4\end{cases}\Rightarrow-1< x< 4}}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-4>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>4\end{cases}\left(loại\right)}}\)
Vậy \(-1< x< 4\)
\(b.x< 2x\)
\(\Rightarrow x-2x< 0\)
\(\Rightarrow x.\left(1-2\right)< 0\)
\(-x< 0\)
\(x>0\)
\(x^3< x^2\)
\(\Rightarrow x^3-x^2< 0\)
\(\Rightarrow x^2\left(x-1\right)< 0\)
\(\Rightarrow\orbr{\begin{cases}x^2>0;\left(x-1\right)< 0\left(nhận\right)\\x^2< 0;\left(x-1\right)>0\left(loại\right)\end{cases}}\)
\(\Rightarrow x< 1\left(x\ne0\right)\)
Ta có : x2 - 2x + 1 = 25
=> x2 - 2.x.1 + 12 = 25
=> (x - 1)2 = 25
Mà 25 = 52 ; (-5)2
=> \(\orbr{\begin{cases}\left(x-1\right)^2=5^2\\\left(x-1\right)^2=\left(-5\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x = {-4;6}
b) (5 - 2x)2 + 1 = 25
<=> (5 - 2x)2 = 24
\(\Rightarrow\orbr{\begin{cases}5-2x=\sqrt{24}\\5-2x=-\sqrt{24}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=5-2\sqrt{6}\\2x=5+2\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5-2\sqrt{6}}{2}\\x=\frac{5+2\sqrt{6}}{2}\end{cases}}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
\(x+2\sqrt{2x^2}+2x^3=0\)
\(\Leftrightarrow x+2x\sqrt{2}+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}+2x^2\right)=0\)
\(\Leftrightarrow x=0\) ( Vì \(1+2\sqrt{2}+2x^2>0\) )
Tìm x biết :
\(x+2\sqrt{2}x^2+2x^3=0\)
\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(x\left(1+\sqrt{2}x\right)^2=0\)
TH1 : x=0
TH2 : \(\left(1+\sqrt{2}x\right)^2=0\)
\(1+\sqrt{2}x=0\)
\(x=\frac{-1}{\sqrt{2}}\)