CMR: A = 3105 + 4105 chia hết cho 13 nhưng không chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
3^105 + 4^105 = 27^35 + 64^35 chia hết cho 27+64=91
Mà 91 chia hết cho 13 nên 3^105 + 4^105 chia hết cho 13
91 ko chia hết cho 11 nên 3^105+4^105 ko chia hết cho 11
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
- Hai số: 33 và 55 chia hết cho 11. Chúng có tổng là: 33+55 = 88, mà 88 chia hết cho 11
=> Tổng của chúng chia hết cho 11.
- Hai số: 26 và 39 chia hết cho 13. Chúng có tổng là: 26+39 = 65, mà 65 chia hết cho 13
=> Tổng của chúng chia hết cho 13.
Ta có:
\(4^3=64\equiv-1\left(mod13\right)\Rightarrow\left(4^3\right)^{35}=4^{105}\equiv-1\left(mod13\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+\left(-1\right)\left(mod13\right)\) hay \(A⋮13\left(1\right)\)
\(3^5=243\equiv1\left(mod11\right)\Rightarrow\left(3^5\right)^{21}=3^{105}\equiv1\left(mod11\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+1\left(mod11\right)\) hay \(A=3^{105}+4^{105}\equiv2\left(mod11\right)\)
=> A không chia hết cho 11 (2)
Từ (1) và (2) => đcpm
Chứng minh chia hết cho 13:
\(A=3^{105}+4^{105}\\ A=\left(3^3\right)^{35}+\left(4^3\right)^{35}\\ A=27^{35}+64^{35}\\ A=\left(27+64\right)\left(27^{34}-27^{33}.35+.......+35^{34}\right)\)
\(A=91\left(27^{34}-27^{33}.35+........+35^{34}\right)\)
\(A=13.7\left(27^{34}-27^{33}.35+........+35^{34}\right)\) chia hết cho 13
Chứng minh không chia hết cho 11
\(3^{105}=243^{21}=\left(242+1\right)^{21}=242^{21}+2.242+1^{21}=242^{21}+2.242+1\)
Vì \(242\) chia hết cho 11 nên \(242^{21}+2.242+1\) chia 11 dư 1
\(4^{105}=1024^{21}=\left(1023+1\right)^{21}=1023^{21}+2.1023+1\)
Vì \(1023\) chia hết cho 11 nên \(1023^{21}+2.1023+1\) chia 11 dư 1
Vậy tổng \(A=3^{105}+4^{105}\) chia 11 dư 2 \(\left(1+1\right)\)
Vậy A không chia hết cho 11 (2)