1 h/s đi đến trường bằng xe đạp với vận tốc 15km/h. Đi đc 1/3 đoạn đg thì xe bị hỏng nên phải dừng lại sửa mất 10 phút . Sau đó em đi tiếp với vận tốc 20km/h nhưng vẫn đến trg trẽ 5 phút so với dự định . Tính thời gian dự định ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định của người đi xe đạp là x(km/h)
(Điều kiện: x>0)
Thời gian dự kiến sẽ đi hết quãng đường là \(\dfrac{20}{x}\left(h\right)\)
Vận tốc sau khi giảm đi 2km/h là:
x-2(km/h)
Sau 1h thì xe đạp đi được: 1*x=x(km)
Độ dài quãng đường còn lại là 20-x(km)
Thời gian thực tế đi hết quãng đường là:
\(1+\dfrac{20-x}{x-2}\left(h\right)\)
Vì người đó đi chậm hơn dự định 30p=0,5h nên ta có:
\(1+\dfrac{20-x}{x-2}-\dfrac{20}{x}=0,5\)
=>\(\dfrac{20-x}{x-2}-\dfrac{20}{x}=\dfrac{-1}{2}\)
=>\(\dfrac{x\left(20-x\right)-20\left(x-2\right)}{x\left(x-2\right)}=\dfrac{-1}{2}\)
=>\(\dfrac{20x-x^2-20x+40}{x\left(x-2\right)}=\dfrac{-1}{2}\)
=>\(\dfrac{x^2-40}{x\left(x-2\right)}=\dfrac{1}{2}\)
=>\(2\left(x^2-40\right)=x\left(x-2\right)\)
=>\(2x^2-80-x^2+2x=0\)
=>\(x^2+2x-80=0\)
=>\(\left(x+10\right)\left(x-8\right)=0\)
=>\(\left[{}\begin{matrix}x+10=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\left(loại\right)\\x=8\left(nhận\right)\end{matrix}\right.\)
Vậy: vận tốc dự định là 8km/h
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Gọi vân tốc thực tế sau khi sửa xe là x (km/h) (x>0)
Nghỉ 30' nên thời gian đi là 10-6=4 h
Quảng đường là 15.4=60 km
Thời gian đi nửa quảng đg đầu trong thực tế: \(\dfrac{30}{15}\)=2 h
Thời gian phải đi sau khi sửa xe: 2-\(\dfrac{1}{3}\)=\(\dfrac{5}{3}\) h
Vân tốc phải đi sau khi sửa xe là \(\dfrac{30}{\dfrac{5}{3}}\)=18 km/h
Vậy phải đi 18 km/h thì đi đúng như thời gian dự định
Gọi C là địa điểm người lái xe máy dừng lại để sửa xe :
Quãng đường AC xe máy đi với vận tốc 35km/h và đi trong 1 giờ :
⇒ S(AC) = 35.1 = (km).
Gọi quãng đường BC dài là x (km) (x>0)
Vận tốc dự tính đi trên BC là : 35km/h
=> Thời gian dự tính đi hết quãng đường BC : x/35
Thực tế do phải sửa xe nên xe máy đi hết quãng đường BC với vận tốc : 35+5=40 (km/h)
⇒ Thời gian thực tế xe máy đi quãng đường BC là: x/40 (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian xe máy phải sửa là 30 phút = 1/2 (giờ).
Do đó ta có phương trình:
x/35 - x/40 =1/2
<=> 8x/280 - 7x/280 = 140/280
<=> 8x - 7x = 140
⇔ x = 140 (thỏa mãn) nên quãng đường BC là 140 (km).
Vậy quãng đường AB là:
S(AB) = S(AC) + S(BC) = 35 + 140 = 175 (km).
Nhớ tick nhé =)))
Đây là tính thời gian mà ?
Tóm tắt
\(V_1=15km\)/\(h\)
\(t'=10'=\frac{1}{6}h\)
\(V_2=20km\)/\(h\)
\(t''=5'=\frac{1}{12}h\)
_____________
\(t=?\)
Giải
Gọi \(S_1,S_2\) lần lượt là quãng đường đi với vận tốc 15 km/h và 20 km/h.
\(t_1;t_2\) lần lượt là thời gian đi quãng đường với vận tốc 15 km/h và 20 km/h.
Ta có công thức tính vận tốc sau: \(V=\frac{S}{t}\Rightarrow t=\frac{S}{V}\)
\(\Rightarrow t=t_1+t'+t_2-t''=\frac{S_1}{V_1}+\frac{1}{6}+\frac{S_2}{V_2}-\frac{1}{12}\)
Trong đó: \(S_1=\frac{1}{3}S\Rightarrow S_2=\frac{2}{3}S\)
Thay vào ta có:
\(t=\frac{S}{V_1}=\frac{\frac{1}{3}S}{15}+\frac{\frac{2}{3}S}{20}+\frac{1}{12}=\frac{1}{45}S+\frac{1}{30}S+\frac{1}{12}\Rightarrow\frac{S}{15}=\frac{1}{18}S+\frac{1}{12}\Rightarrow\frac{1}{90}S=\frac{1}{12}\Rightarrow S=7,5\left(km\right)\)
Vậy \(t=\frac{7,5}{15}=0,5\left(h\right)=30'\)
Đặt quãng đường là \(S\left(km\right)\)
Đổi 5 phút = \(\frac{1}{12}h\)
Thời gian dự định là \(\frac{S}{15}\)(giờ)
Đi \(\frac{1}{3}\)đoạn đường hết : \(\frac{\left(\frac{S}{3}\right)}{15}=\frac{S}{45}\)(giờ)
\(\frac{2}{3}\)đoạn đường còn lại học sinh đó đi hết :
\(\frac{\left(\frac{2}{3}S\right)}{20}=\frac{S}{30}\)(giờ)
Ta có :
\(\frac{S}{45}+10pt+\frac{S}{30}=\frac{S}{15}+5pt\)(Phụ chú : h là giờ; pt là phút)
\(\Rightarrow\left(\frac{1}{45}+\frac{1}{30}-\frac{1}{15}\right)S+5pt=0\)
\(\frac{1}{12}h-\frac{S}{90}=0\)
\(\frac{S}{90}=\frac{1}{12}\)
\(S=7,5\left(km\right)\)
Vậy;...