K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 5 số tự nhiên liên tiếp là a;a+1;a+2;a+3;a+4

Vì S=a(a+1)(a+2)(a+3)(a+4) là tích của 5 số tự nhiên liên tiếp

nên \(S⋮5!=120\)

3 tháng 1 2022

Giải

Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*) 
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6 
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2 
=> A chia hết cho 2 
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)

3 tháng 1 2022

Gọi 3 số tự nhiên liên tiếp đó là \(n,n+1,n+2\)

Ta cần chứng minh \(n\left(n+1\right)\left(n+2\right)⋮6\)

Ta thấy \(2.3=6\)mà \(\left(2,3\right)=1\)nên ta theo hướng sẽ chứng minh \(n\left(n+1\right)\left(n+2\right)\)vừa chia hết cho 2, vừa chia hết cho 3

Thật vậy. Khi n là số chẵn thì hiển nhiên \(n\left(n+1\right)\left(n+2\right)⋮2\)

Khi n là số lẻ thì \(n+1⋮2\)và từ đó \(n\left(n+1\right)\left(n+2\right)⋮2\)

Vậy \(n\left(n+1\right)\left(n+2\right)⋮2\)với mọi số tự nhiên \(n\)

Khi \(n⋮3\)thì hiển nhiên \(n\left(n+1\right)\left(n+2\right)⋮3\)

Khi n chia cho 3 dư 1 thì \(n+2⋮3\)và từ đó \(n\left(n+1\right)\left(n+2\right)⋮3\)

Khi n chia cho 3 dư 2 thì \(n+1⋮3\)và từ đó \(n\left(n+1\right)\left(n+2\right)⋮3\)

Như vậy \(n\left(n+1\right)\left(n+2\right)⋮3\)với mọi số tự nhiên n

Mà \(\left(2,3\right)=1\)nên \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\)

Ta có đpcm

23 tháng 8 2021

Gọi 2 số chẵn liên tiếp là 2a, 2a+2

2a.(2a+2)=4a.(a+1)

Ta có: a.(a+1)⋮2

⇒ 4a.(a+1)⋮2.4

⇒ 4a.(a+1)⋮8 (đpcm)

 

23 tháng 8 2021

em ko hiểu lắm ạ

2 tháng 1 2018

Vì 5 số liên tiếp đó đều có các số chia hết cho 2;3;4;5 mà \(2\cdot3\cdot4\cdot5=120\)

=> tích 5 số đó chia hết cho 120

VD \(9\cdot10\cdot11\cdot12\cdot13=154440⋮120\)

2 tháng 11 2015

ai tích cho tui đi để cho tui tròn 300 điểm coi!

tui sẽ cảm tạ = cách cho lại 3 l i k e !

14 tháng 10 2018

a,ta có 2 STN liên tiếp là : a,a+1 

a . (a + 1 ) 

Trường hợp 1

Nếu a là số chẵn thì \(⋮\)=> a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )

Trường hợp 2 

Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2 

Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2 

14 tháng 10 2018

Câu b : 

ta gọi như câu a : a , a+1,a+2 

ta có : a . ( a + 1 ) . ( a + 2 ) 

TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3 

TH2 Nếu a+1 chia hết cho 3 => Tích của  3 STH liên tiếp chai hết cho 3 

TH3 nếu a + 2 chia hết cho 3 = > Tích của  3 STH liên tiếp chai hết cho 3 

11 tháng 1 2019

1) Ta có: 3n2+3n

= 3(n2+n) \(⋮\) 3

Vì n là STN nên:

TH1: n là số tự nhiên lẻ.

\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2

\(\Rightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.

TH2: n là số tự nhiên chẵn.

\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)

3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.

Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)

23 tháng 8 2022

3)

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\RightarrowTích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮88(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮55\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮55                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrow3k(k+1)(k+2)(k+3)(k+4)⋮33                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3.5.83.5.8=120

Vậy tích của 5 số tự nhiên liên tiếp ⋮120120

25 tháng 7 2015

Gọi 5 số tự nhiên liên tiếp là a; a + 1; a + 2; a + 3; a + 4 

=> Tích của chúng là a(a+1)(a+2)(a+3)(a+4)

Trong tích của 5 số tự nhiên liên tiếp có ít nhất tích 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp chia hết cho 8 nên => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8 (1)

Tích của 5 số tự nhiên liên tiếp thì luôn chia hết cho 5 (vì trong tích có ít nhất 1 số chia hết cho 5) => a(a+1)(a+2)(a+3)(a+4) chia hết cho 5 (2)

Trong tích của 5 số tự nhiên liên tiếp có tích của 3 STN liên tiếp. Tích của 3 STN liên tiếp thì chia hết cho 3 => a(a+1)(a+2)(a+3)(a+4) chia hết cho 3 (3)

Từ (1), (2), (3) và 8,3,5 là các số đôi một nguyên tố cùng nhau nền => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8.5.3 = 120

Vậy tích 5 STN liên tiếp luôn chia hết cho 120.

1 tháng 2 2017

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\(\Rightarrow\)Tích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp \(⋮\)8\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮8\)(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số \(⋮5\)\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮5\)                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp\(⋮3\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮3\)                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮3.5.8\)=120

Vậy tích của 5 số tự nhiên liên tiếp \(⋮120\)

9 tháng 7 2015

gọi 5 số tự nhiên đó là

A=n(n+1)(n+2)(n+3)(n+4)

ta thấy n+2,n+4 là 2 số chẵn liên tiếp mà tích của 2 số chẵn liên tiếp luôn chia hết cho 8=>A chia hết cho 8(1)

do trong 5 số tự nhiên liên tiếp luôn tồn tại 1 số chia hết cho 5 =>A chia hết cho 5(2)

do n,n+1,n+2 là 3 số tự nhiên liên tiếp

mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3=>A chia hết cho 3(3)

từ 1 ,2,3=> A chia hết cho 3,5,8<=>A chia hết cho bcnn(3,5,8)=120(đpcm)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 7 2019

a) Gọi ba số tự nhiên đó là : a ; a + 1 và a + 2

Tổng là : a + a +1 + a + 2 = 3a + 3 chia hết cho 3

b) gọi 4 stn là a ; a + 1 ; a + 2 và a + 3

ta có tổng là a + a + 1 + a + 2 + a + 3 = 4a + 6 

4a chia hết cho 4

6 không chia hết cho 4 

=> 4a + 6 k chia hết cho 4