1 số sách khi xếp thành từng bó10 cuốn, 12 cuốn, 15 cuốn, 18 cuốn đều vừa đủ bó. Biết số sách từ 200 đến 500. Tìm số sách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số sách cần tìm
a thuộc BC (10,12,15,18) và 200<a<500
10=2.5; 12=22.3; 15=3.5; 18=2.32
BCNN(10,12,15,18)=22.32.5=180
BC (10,12,15,18)= B(180)={0;180;360;540;720;.......}
mà 200<a<500 nên a=360
gọi số sách là : a
Theo đề ra ta có: a \(⋮\)10;12;15;18
\(\Rightarrow\)a\(\in\)BC(10;12;15;18)
Ta có
10=2.5
12=2\(^{^2}\).3
15=3.5
18=2.3\(^2\)
Vậy BCNN(10;12;15)=2\(^2\).3\(^2\).5=180
BC(10;12;15)=B(180)={0;180;360;540...}
Vì a khoảng 200 đến 500 nên a=360
Vậy bó sách đó có 36 quyển
Gọi m (m ∈ N*) là số sách cần tìm.
Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)
Ta có: 10 = 2.5
12 = 22.3
15 = 3.5
18 = 2.32
BCNN(10,12,15,18) = 22.32.5 = 180
BC(10,12,15,18) = {0;180;360;540;..}
Vì số sách nằm trong khoảng 200 đến 500 nên m = 360
Vậy có 360 cuốn sách
Gọi x là số sách cần tìm là :
Ta có x=BCNN (10,12,15,18)
Mà BCNN(10,12,15,18)=180
x={0,180,360 ,540...} vì x từ 200 đến 500
Nên x= 360 quyển vở
Gọi số vở cần tìm là a (quyển sách)
Ta có a thuộc BC(10;12;15;18) = { 0;180;360;540;.......}
a = {0;180;360;540;.......}
Mà số sách trong khoảng từ 200 đến 500 quyển
Sra a=360
Vậy số sách cần tìm là 360 quyển sách.
Bài làm :
Gọi số sách đó là a
Vì a xếp thành từng bó 10 cuốn , 12 cuốn , 15 cuốn , 18 cuốn đều vừa đủ nên \(a⋮10;12;15;18\)
Ta có :
\(10=2.5\)
\(12=2^2.3\)
\(15=3.5\)
\(18=2.3^2\)
BCNN(10;12;15;18) = \(2^2.3^2.5=180\)
BC(10;12;15;18) = B(180) \(\in\left\{0;180;360;540;...\right\}\)
Vì \(200< a< 500\Rightarrow a=360\)
Vậy số sách là 360
Gọi số sách là a:
Vì a \(⋮\) 10 cuốn , 12 cuốn , 15 cuốn , 18 cuốn ( vì 200 < a < 500 )
\(\Rightarrow\) a \(\in\) BCNN ( 10 , 12 , 15 , 18 )
Ta có :
10 = 2 . 5
12 = \(2^2\). 3
15 = 3 . 5
18 = 2 . \(3^2\)
BCNN ( 10 , 12 , 15 , 18 ) = \(2^2\) . \(3^2\) . 5 = 180
BC ( 10 , 12 , 15 , 18 ) = { 0 , 180 , 360 , 540 }
Vì 200 < a < 500 , nên :
\(\Rightarrow\) a = 360
Vậy số sách cần tìm là : 360 cuốn
Gọi m (m ∈ N*) là số sách cần tìm.
Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)
Ta có: 10 = 2.5
12 = 22.3
15 = 3.5
18 = 2.32
BCNN(10,12,15,18) = 22.32.5 = 180
BC(10,12,15,18) = {0;180;360;540;..}
Vì số sách nằm trong khoảng 200 đến 500 nên m = 360
Vậy có 360 cuốn sách.
Đáp án: C
Gọi x là số sách 200< x < 500 x là số nguyên
Ta có:
gọi số sách là a(200<a<500) ta có a chia hết cho 10,12,15,18 =>a thuộc BC(10,12,15,18)
Mà BCNN(10,12,15,18)=180=>B(10,12,15,18) thuộc {0,180,360,540,....}
Mà 200<a<500=>a=360
Vậy số sách có là 360
nhớ tk mình nha
Gọi số sách là x \(\left(x\in N\text{*}\right)\)
Khi xếp sách thành từng bó 10,12,15,18 cuốn đều đủ
\(\Rightarrow x\in BC\left(10;12;15;18\right)\)
Ta có:
10=2*5
12=22*3
15=3*5
18=2*32
\(\Rightarrow BCNN\left(10;12;15;18\right)=2^2\cdot3^2\cdot5=180\)
Mà 200<x<500\(\Rightarrow x=360\)
Vậy số sách đó là 360 cuốn
Số sách là BC của 10;12;15;18 và nằm trong khoảng từ 200 đến 500 cuốn. Tìm BC của các số trên rồi đối chiếu với đk kia là ra.