Viết thành lũy thừa của một cơ số :
C = 2+ 2 + 22 + 23 + ... + 299
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 4 thành 2 mũ 2
Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r
Dễ:đổi 4=22
B=22+23+24+...+220
ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)
= 221-22
Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá
\(A=4+2^2+2^3+...+2^{2006}\)
\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)
Thay \(B=2^{2007}-4\) vào A, ta được:
\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)
$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.
Vậy: ...
Lời giải:
$(2300-22):1+1=2279$
Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2.
\(x^m:x^n=x^{m-n}\)
\(x^m.x^n=x^{m+n}\)
\(\left(x^m\right)^n=x^{m.n}\)
C = 2+ 2 + 22 + 23 + ... + 299
=2100
\(C=2+2+2^2+2^3+...+2^{99}\)
C=(2+2^2+2^3+...+2^99)+2
2C=2x(2+2^2+2^3+...+2^99)
2C=2^2+2^3+2^4+...+2^100+2
2C-C=(2+2^2+2^3+...+2^100)-(2+2+2^2+2^3+...+2^99)
C=2^100-(2+2^99)