4xy-4x-2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm
\(\left\{{}\begin{matrix}4x^2+y^2\left(1-4xy\right)=0\\4x^2+2y^2-4xy-1=0\end{matrix}\right.\)
\(\Rightarrow y^2\left(1-4xy\right)-2y^2+4xy+1=0\)
\(\Leftrightarrow-y^2\left(4xy+1\right)+4xy+1=0\)
\(\Leftrightarrow\left(4xy+1\right)\left(1-y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4xy=-1\\y^2=1\end{matrix}\right.\)
Bạn tự giải nốt
\(x^3+4x^2y+4xy^2-4x\)
\(=x\left(x^2+4xy+4y^2-4\right)\)
\(=x\left[\left(2y+x\right)^2-2^2\right]\)
\(=x\left(2y+x+2\right)\left(2y+x-2\right)\)
\(x^3+4x^2y+4xy^2-4x=x\left(x^2+4xy+4y^2-4y\right)\)
\(=x\left[\left(2y+x\right)^2-2^2\right]\)
\(=x\left(2y+x+2\right)\left(2y+x-2\right)\)
đề thiếu y3 nha
x^3-4x^2y+4xy^2-y3
=(x3-y3)-(4x2y-4xy2)
=(x-y)(x2+xy+y2)-4xy(x-y)
=(x-y)(x2-3xy+y2)
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(A=-\left(2x-y\right)^2-\left(y-1\right)^2+4\)
Do \(\left\{{}\begin{matrix}-\left(2x-y\right)^2\le0\\-\left(y-1\right)^2\le0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow A\le4;\forall x;y\)
Vậy \(A_{max}=4\) khi \(x=\dfrac{1}{2};y=1\)
đề ?