Chứng minh số có dạng: A= 34n+4-43n+3 chia hết cho 17 ( n ϵ N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A thuộc S thì A=x^2+3y^2
Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2
=>N/4 thuộc S
Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8
=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4
Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2
=>A/4 thuộc S
Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S
=>ĐPCM
a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)
- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)
- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)
Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)
- Với \(n=1:\)
\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)
- Với \(n=k:\)
\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)
- Với \(n=k+1:\)
\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))
Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)
Ta có :
\(A=3^{4\left(n+1\right)}-4^{3\left(n+1\right)}=81^{n+1}-64^{n+1}\)
\(=\left(81-64\right)\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)
\(=17\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)chia hết cho 17
Vậy ...