K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

\(B=\frac{5}{17}-3\sqrt{x-5}\)

Vì: \(-3\sqrt{x-5}\le0\) với mọi \(x\ge5\)

=> \(\frac{5}{17}-3\sqrt{x-5}\le\frac{5}{17}\)

Vậy GTLN của B là \(\frac{5}{17}\) khi x=5

10 tháng 5 2017

a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)

Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).

b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)

=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0

Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

NV
30 tháng 6 2021

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

30 tháng 6 2021

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

4 tháng 11 2016

\(B=\frac{2\sqrt{x}+5}{\sqrt{x}+2}=\frac{2\sqrt{x}+4+1}{\sqrt{x}+2}=\frac{2.\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+2}=2+\frac{1}{\sqrt{x}+2}\)

Để B lớn nhất thì \(\frac{1}{\sqrt{x}+2}\) lớn nhất hay \(\sqrt{x}+2\) nhỏ nhất

Có: \(\sqrt{x}+2\ge0\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Khi x = 0 thì \(B=\frac{2\sqrt{0}+5}{\sqrt{0}+2}=\frac{0+5}{0+2}=\frac{5}{2}\)

Vậy GTLN của B là \(\frac{5}{2}\) khi x = 0