K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

\(2-\sqrt{3}< 3-\sqrt{2}\)

4 tháng 8 2021

\(2-\sqrt{3}>3-2\sqrt{2}\)

9 tháng 7 2018

a) Ta có : \(5>2\Rightarrow\sqrt{5}>\sqrt{2}\)

b) Vì \(8>5\Rightarrow\sqrt{8}>\sqrt{5}\Rightarrow2\sqrt{2}>5\)

c) VÌ \(-32>-45\Rightarrow-\sqrt{32}>-\sqrt{45}\Rightarrow-4\sqrt{2}>-\sqrt{5}\)

d) Vì \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Leftrightarrow2\sqrt{3}< 3\sqrt{2}\)

9 tháng 7 2018

không tính toán bạn ơi!

5 tháng 7 2019

\(A=\sqrt{4+\sqrt{4+\sqrt{4+....}}}\)vô số dấu căn

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4+....}}}\)

\(\Leftrightarrow A^2-A-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4+....}}}< 3\)

5 tháng 7 2019

\(A=\sqrt{4+\sqrt{4}+\sqrt{4+.....}}\)vô số dấu căn

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4+...}}}\)

\(\Leftrightarrow A^2-A-A=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có: \(\sqrt{4+\sqrt{4}+\sqrt{4+.....}}< 3\)

Rất vui vì giúp đc bạn <3

15 tháng 7 2021

Ta có: \(\sqrt{1+\sqrt{2+\sqrt{3}}}=\sqrt{1+\sqrt{\dfrac{4+2\sqrt{3}}{2}}}=\sqrt{1+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}}\)

\(=\sqrt{1+\dfrac{\sqrt{3}+1}{\sqrt{2}}}=\sqrt{\dfrac{\sqrt{2}+\sqrt{3}+1}{\sqrt{2}}}\)

\(\Rightarrow\) cần so sánh \(\sqrt{\dfrac{\sqrt{2}+\sqrt{3}+1}{\sqrt{2}}}\) với 2

Bình phương 2 vế (cả 2 vế đề không âm nên bình phương được)

\(\Rightarrow\) cần so sánh \(\dfrac{\sqrt{2}+\sqrt{3}+1}{\sqrt{2}}\) với 4

\(\Rightarrow\) cần so sánh \(\sqrt{2}+\sqrt{3}+1\) với \(4\sqrt{2}\)

\(\Rightarrow\) cần so sánh \(\sqrt{3}+1\) với \(3\sqrt{2}\)

Ta có; \(3\sqrt{2}=2\sqrt{2}+\sqrt{2}=\sqrt{8}+\sqrt{2}\)

Vì \(\left\{{}\begin{matrix}8>3\\2>1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{8}>\sqrt{3}\\\sqrt{2}>\sqrt{1}\end{matrix}\right.\Rightarrow\sqrt{8}+\sqrt{2}>\sqrt{3}+1\)

\(\Rightarrow\sqrt{1+\sqrt{2+\sqrt{3}}}< 2\)

8 tháng 9 2021

\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)

\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)

\(\sqrt{2}\) + \(\sqrt{3}\)  > 2