cho tam giac ABC co AB=AC=17cm ,BC=16cm .Tính độ dài đường cao AH va so do goc A goc Bcua tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức về cạnh trong tam giác vào ΔABC, ta được:
\(AB\cdot AC=BC\cdot AH\)
\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{17\cdot17}{16}=18.0625cm\)
Vậy: AH=18,0625cm
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)
a: Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
Do đó: ΔABH=ΔACH
b: ΔBAC cân tại A
mà AH là phân giác
nên AH vuông góc với BC
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>BH=CH=8(cm)
XétΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=15(cm)
Xét ΔABC có
\(\cos A=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{161}{289}\)
\(\Leftrightarrow\widehat{A}=56^0\)
\(\Leftrightarrow\widehat{B}=\dfrac{180^0-56^0}{2}=62^0\)