Phân tích đa thức thành nhân tử:
a)1/64x^6-125y^3
b)x^6+1
c)x^6-y^6
d)x^9+1
e)x^12-y^4
(Các bn giúp mik vs)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x4+16y6-24x2y3
=(3x2)2-2.3x2.4y3+(4y3)2
=(3x2-4y3)2
b) 16x2-24xy+9y2
=(4x)2-2.4x.3y+(3y)2
=(4x-3y)2
c) 36x2-(3x-2)2
=(36x-3x+2)(36x+3x-2)
=(33x+2)(39x-2)
d) 27x3+54x2y+36xy2+8y3
=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3
=(3x+2y)3
e) y9-9x2y6+27x4y3-27x6
=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3
=(y3-3x2)3
f) 64x3+1
= (4x)3+13
=(4x+1)[(4x)2-4x.1+12]
=(4x+1)(16x2-4x+1)
e) 27x6-8x3 *sửa đề*
=(3x2)3-(2x)3
=(3x2-2x)[(3x)2+3x2.2x+(2x)2]
=(3x2-2x)(9x2+6x3+4x2)
~~~
\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)
\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)
\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)
\(a,=6y\left(2x^2-3xy-5y^2\right)\\ =6y\left(2x^2+2xy-5xy-5y^2\right)\\ =6y\left(x+y\right)\left(2x-5y\right)\\ b,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ c,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\\ =\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ d,=\left(a^2+3b\right)^2-1=\left(a^2+3b+1\right)\left(a^2+3b-1\right)\\ e,=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\\ =\left(2x-5\right)\left(2x+5-2x-7\right)\\ =-2\left(2x-5\right)\\ f,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ g,=x^3-x-6x-6\\ =x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x-6\right)\\ =\left(x+1\right)\left(x^2-3x+2x-6\right)\\ =\left(x+1\right)\left(x-3\right)\left(x+2\right)\\ l,=x^4+4x^2+4-4x^2\\ =\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\\ h,=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
`a, 8x^3 - 1 = (2x-1)(4x^2 + 2x - 1)`
`b, x^3 + 27y^3 = (x+3y)(x^3 - 3xy + 9y^2)`
`c, x^3 - y^6 = (x-y^2)(x+xy^2 + y^4)`
a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c: \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
a)\(\frac{1}{64}x^6-125y^3=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
b)\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^4+x^2+1\right)\)
c)\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
d)\(x^9+1=\left(x^3\right)^3+1=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
\(=x^3\left(x+1\right)\left(x^2-x+1\right)\left(x^2-x+1\right)\)