K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Bài giải:        

a) Ta có AD = CD

nên AD + DB = CD  + DB = CB      (1)                                     

và AE = CE                              

  nên AE + EB = CE + EB               (2)

mà CB < CE + EB                           (3)

Nên từ (1) (2) và (3), suy ra

AD + DB < AE + EB

b) Theo câu a con đường ngắn nhất mà bạn Tú phải đi là con đường ADB.

 

20 tháng 9 2018

Giải bài 39 trang 88 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + A và C đối xứng qua d

⇒ d là trung trực của AC

⇒ AD = CD

⇒ AD + DB = CD + DB = CB (1)

+ E ∈ d ⇒ AE = CE

⇒ AE + EB = CE + EB (2)

+ CB < CE + EB (3)

Từ (1), (2), (3) ⇒ AD + DB < AE + EB

b) Vì với mọi E ∈ d thì AE + EB > AD + DB

Do đó con đường ngắn nhất bạn Tú nên đi là đường ADB.

21 tháng 4 2017

Bài giải:

a) Ta có AD = CD

nên AD + DB = CD + DB = CB (1)

và AE = CE

nên AE + EB = CE + EB (2)

mà CB < CE + EB (3)

Nên từ (1) (2) và (3), suy ra

AD + DB < AE + EB

b) Theo câu a con đường ngắn nhất mà bạn Tú phải đi là con đường ADB

28 tháng 6 2018

Bài giải:

a) Ta có AD = CD

nên AD + DB = CD + DB = CB (1)

và AE = CE

nên AE + EB = CE + EB (2)

mà CB < CE + EB (3)

Nên từ (1) (2) và (3), suy ra

AD + DB < AE + EB

b) Theo câu a con đường ngắn nhất mà bạn Tú phải đi là con đường ADB.

18 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì A' đối xứng với A qua xy

⇒ xy là đường trung trực của AA'.

⇒ CA' = CA (t/chất đường trung trực)

MA' = MA (t/chất đường trung trực)

AC + CB = A'C + CB = A'B (1)

MA + MB = MA'+ MB (2)

Trong ∆ MA'B, ta có:

A'B < A'M + MB (bất đẳng thức tam giác) (3)

Từ (1), (2) và (3) suy ra: AC + CB < AM + MB

23 tháng 1 2022

1/

Theo đề có AD//BC hay AD//BM

mà M là trung điểm BC

=>BM=4cm 

Xét tứ giác ABMD có:

AD//BM và AD=BM (cmt)

vậy ABMD là hình bình hành.

b/ Áp dụng đ/l ta-lét có :

\(\dfrac{AD}{BC}=\dfrac{DE}{EB}=\dfrac{AE}{EC}=\dfrac{1}{2}\)

vậy ΔAED ∼ Δ CEB 

<=> vì các cạnh của Δ AED đều = \(\dfrac{1}{2}\) cạnh của Δ CEB suy ra:

\(\dfrac{P_{AED}}{P_{CEB}}=\dfrac{1}{2}\)