K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Để \(B=\frac{x^2-x+1}{2}>0\forall x\) thì ta cần chứng minh :

\(x^2-x+1>0\)

\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)( đpcm )

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

11 tháng 10 2017

Để B > 0 thì x- x + 1 > 0

Ta có : x2 - x + 1 = \(^{x^2-x+\frac{1}{4}+\frac{3}{4}}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy B > 0 với mọi giá trị của biến x 

3 tháng 10 2019

 = (x2-x+1)(x2+3x+10)+10 = P

x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0

x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0

vây P>0

16 tháng 8 2018

\(x^2+x+5\)

\(=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{19}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}>0\) \(\forall x\)

p/s: chúc bạn học tốt

29 tháng 12 2018

x^2 - x + 3/4 

= x^2 - 2.x.(1/2) + (1/2)^2 - (1/2)^2 + 3/4

= (x-1/2)^2 + 1/2 

Có (x-1/2)^2 >= 0 => (x-1/2)^2 + 1/2 >= 1/2 > 0

Vậy x^2 - x + 3/4 > 0 với mọi giá trị của x

29 tháng 12 2018

\(x^2-x+\frac{3}{4}=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)

Do \(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

\(\RightarrowĐPCM\)