Chứng minh răng : x + 1/x > 2 với mọi giá trị của x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(B=\frac{x^2-x+1}{2}>0\forall x\) thì ta cần chứng minh :
\(x^2-x+1>0\)
\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)( đpcm )
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
Để B > 0 thì x2 - x + 1 > 0
Ta có : x2 - x + 1 = \(^{x^2-x+\frac{1}{4}+\frac{3}{4}}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy B > 0 với mọi giá trị của biến x
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
x^2 - x + 3/4
= x^2 - 2.x.(1/2) + (1/2)^2 - (1/2)^2 + 3/4
= (x-1/2)^2 + 1/2
Có (x-1/2)^2 >= 0 => (x-1/2)^2 + 1/2 >= 1/2 > 0
Vậy x^2 - x + 3/4 > 0 với mọi giá trị của x
\(x^2-x+\frac{3}{4}=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)
Do \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
\(\RightarrowĐPCM\)