K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

\(\left(-2\right).\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right).....\left(-1\frac{1}{2013}\right)\)

\(=\left(-2\right).\left(\frac{-3}{2}\right)\left(-\frac{4}{3}\right)......\left(\frac{-2014}{2013}\right)\)

\(=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2014\right)}{2.3.....2013}\)

\(=\frac{2.3.4....2014\left(\text{Vì có 2014 thừa số âm }\right)}{2.3....2013}\)

\(=\frac{\left(2.3.4....2013\right).2014}{2.3....2013}\)

\(=2014\)

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu cặp...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
3 tháng 3 2016

bn ơi cho mik hỏi cái này là vòng 15 của năm 2015-2016 hả

3 tháng 3 2016

2.    -1;0;1;2

4.     7cm

6.      9

16 tháng 7 2016

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

16 tháng 7 2016

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

16 tháng 6 2019

Câu 8 :

\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)

Đặt \(x-1=a\)

\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)

\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)

\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)

\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)

\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)

\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)

\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)

\(N=\frac{-x\left(x+1\right)}{x+1}\)

\(N=-x\)( đpcm )

16 tháng 6 2019

Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :

\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)

Bài làm :

\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)

\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)

\(P=x\left(x+4\right)+9\)

\(P=x^2+4x+9\)

\(P=\left(x+2\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-2\)