K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Áp dụng định lý Pi - ta - go, ta có :

\(AB=\sqrt{CA^2+CB^2}=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Áp dụng định lý ' Trong tam giác vuông , trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền ' ở đây là

\(CM=\frac{.AB}{2}=\frac{5}{2}=2,5cm\)

A C B 3cm 4cm

14 tháng 10 2016

CM=2,5 cm

 

2 tháng 10 2016

A C B 3 cm 4 cm

Theo địa lý Pi - ta - go : \(AB=\sqrt{CA^2+CB^2}=\sqrt{3^2+4^2}=\sqrt{25}=5\left(cm\right)\)

Áp dụng định lý ' Trong tam giác vuông , trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền ' ở đây là CM = AB / 2 = 5/2 = 2,5 ( cm ) 

9 tháng 9 2016

áp dụng định lí py-ta-go 

suy ra AB=căn hai của 7

áp dụng định lí py-ta-go 

suy ra MC=căn hai 43 phần 2

23 tháng 9 2016

C A B M 3 cm 4 cm

Theo định lí Pi-ta-go,\(AB=\sqrt{CA^2+CB^2}=\sqrt{3^2+4^2}=\sqrt{25}=5\left(cm\right)\)

Áp dụng định lí 'Trong tam giác vuông,trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền',ở đây là CM = AB / 2 = 5/2 = 2,5 (cm)

Bài này tương tự bài 25 / 67 / SGK toán 7 tập 2,định lí sau được chứng minh ở bài 56 / 80 / SGK Toán 7 tập 2

1 tháng 9 2017

A B C 14 cm 16 cm

\(\text{Gọi AH là hình chiếu của AB trên cạnh huyền BC.}\)

\(\text{Áp dụng hệ thức lượng vào ∆ABC vuông tại A, ta có: }\)\(AC^2=CH.BC\)

                                                                                                          \(\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{14^2}{16}=12,25\left(cm\right)\)

\(\text{Áp dụng định lý Pytago vào ∆HAC vuông tại H:}\) \(AH^2=AC^2-HC^2\)

                                                                                            \(\Leftrightarrow AH=\sqrt{14^2-12,25^2}=\sqrt{\frac{735}{16}}=\frac{7\sqrt{15}}{4}\left(cm\right)\)

24 tháng 9 2015

Theo mình:

Tam giác ABC vuông tại A 

---> BA là đường cao ( BA vuông góc AC)

---> S tam giác ABC = \(\frac{a.h}{2}=\frac{AC.BC}{2}=\frac{4.3}{2}=6cm^2\)

Pytago tam giác ABC vuông tại A:

BC= BA2 + AC2 

       = 9 + 16

       = 25 

BC= 5 cm

Vì AH cũng là đường cao của tam giác ABC

----> AH = \(\frac{2.S}{a}=\frac{2.6}{BC}=\frac{12}{5}=2,4cm\)

Theo mình thì mình làm vậy á, nếu mình làm sai thì bạn sửa giùm mình nha

15 tháng 10 2017

bài làm ngu lắm

3 tháng 8 2016

A B H C

xét tam giác ABC vuông ở A co \(BC^2=AB^2+AC^2\left(pitago\right)\)

\(BC^2=9+16=25\Rightarrow BC=5\)

xet tgABH va tgCBA co  goc B chung   ; gAHB=gBAC =90

=>tgABH đồng dạng tgCBA   =>\(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{4}=\frac{3}{5}\Rightarrow AH=\frac{3\cdot4}{5}=\frac{12}{5}\)

11 tháng 12 2015

S=pr => r=1,5 nhé Trang ^^