Chứng minh rằng 12^2009-2^2001 chia hết cho 10
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LG
2
DS
31 tháng 7 2016
Lập luận văn nói ta sẽ có:
\(=2001^{2001}-1997^{1996}\)
\(=\left(....1\right)-\left(....1\right)\)(Vì chữ số tận cùng là 1 nên lũy thừa lên ko thay đổi,tận cùng là 7 lũy thừa 4n tận cùng là 1 mà 1996 chia hết cho 4 nên ta viết được biểu thức trên)
\(=\left(...0\right)\)chia hết cho 10.
Chúc em học tốt^^
HM
1
NT
0
19 tháng 4 2020
Bạn tham khảo
http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
Ta có:
122009 - 22001
= 122008.12 - 22000.2
= (124)502.12 - (24)500.2
= (...6)502.12 - (...6)500.2
= (...6).12 - (...6).2
= (...2) - (...2)
\(=\left(...0\right)⋮10\left(đpcm\right)\)