Nếu a,b,c khác 0 và khác nhau thỏa mãn \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=3\) ; \(a+b+c\ne0\) thì giá trị của biểu thức \(K=\frac{9a^4+9b^4+9c^4}{\left(a+b+c\right)^4}\) là...............
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a^3 +b^3+c^3=3abc(quy đồng)
=> (a+b+c)1/2{(a-b)^2+(b-c)^2+(c-a)^2}=0
=> a=b=c
còn lại bạn tự làm
Cho a,b,c khác 0 và thỏa mãn ab+bc+ca=0
Hãy tính : \(P=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
\(ab+bc+ca=0\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(vì \(a,b,c\ne0\))
Ta có hằng đẳng thức: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
nên \(x+y+z=0\)thì \(x^3+y^3+z^3=3xyz\)
Từ đó suy ra \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=3\)
\(\Leftrightarrow P=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=3\)
Áp dụng tính chất dãy tỉ số bằng nhau; ta được:
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}=\frac{ab+ac+bc+ba-\left(ca+bc\right)}{2+3-4}=\frac{2ab}{1}\)
Tương tự; ta được: \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}=\frac{bc+ba+ca+bc-\left(ab+ac\right)}{3+4-2}=\frac{2bc}{5}\)
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{ab+ac-\left(bc+ba\right)+ca+cb}{2-3+4}=\frac{2ac}{3}\)
Từ các điều trên; ta được:
\(\frac{2ac}{3}=\frac{2ab}{1}=\frac{2bc}{5}\)
\(\Rightarrow\frac{10ac}{15}=\frac{30ab}{15}=\frac{6bc}{15}\)
\(\Rightarrow10ac=30ab=6bc\)
\(\Rightarrow10ac=30ab\Rightarrow b=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\left(1\right)\)
\(30ab=6bc\Rightarrow5a=c\Rightarrow a=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\left(ĐPCM\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}=\frac{ab+ac+bc+ba-\left(ca+bc\right)}{2+3-4}=\frac{2ab}{1}\)
\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)
\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))
\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)
\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)
\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)
\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)
Từ (1) và (2) được a = b = c
Khi đó:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc])))
Ta có:
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên)
=abc.3/(abc)=3
Cách II:
Từ giả thiết suy ra:
(1/a +1/b)³=-1/c³
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc.3/(abc)=3
Mik ko biết có đúng ko??
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
cáh khác nè:từ
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{aa+aa+aa}{a^2+a^2+a^2}=1\)
bạn dưới làm sai rồi
P=1 MỚI ĐÚNG
kq=9
kq: \(\dfrac{1}{3}\)