Cho các số dương a,b thỏa mãn điều kiện ab=1. Tìm GTNN của biểu thức:
A=(a+ b + c)(a^2 +b^2) + 4/(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).
Cho phép mình giải max bài này ạ:
Ta có:
\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\overset{cosi}{\le}\dfrac{a+b+a+c}{2}\)
Tương tự: \(\sqrt{2b+ac}\le\dfrac{b+c+b+a}{2};\sqrt{2c+ab}\le\dfrac{c+a+c+b}{2}\)
\(\Rightarrow Q\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=4\)
Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{2}{3}\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự và cộng lại:
\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)
Từ giả thiết \(1\le a\le2\) => ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)
Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)
Vì vậy ta có P:
\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Ta có:
\(\hept{\begin{cases}\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\\\frac{b^2}{1+a}+\frac{1+a}{4}\ge b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{1+b}\ge\frac{4a-b-1}{4}\\\frac{b^2}{1+a}\ge\frac{4b-a-1}{4}\end{cases}}\)
\(\Rightarrow A=\frac{a^2}{1+b}+\frac{b^2}{1+a}\ge\frac{4a-b-1}{4}+\frac{4b-a-1}{4}\)
\(=\frac{3}{4}\left(a+b\right)-\frac{1}{2}\ge\frac{3}{4}.2\sqrt{ab}-\frac{1}{2}=\frac{3}{2}-\frac{1}{2}=1\)
Dấu = xảy ra khi \(a=b=1\)