K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

a.

\(P=\frac{6}{x^2-6x+17}\)

Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$

$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$

Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

b/

Ta có:

$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$

$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$

$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$

6 tháng 8 2017

a,A=12

b,B=8

c,C=-3

6 tháng 8 2017
A= (x^2-4x+4)+3 A= (x-2)^2>= 3 Vậy GTNN của A=3 <=> x=2 B=x^2+8x B=(x^2+8x+16)-16 B=(x+4)^2-16>= -16 Vậy GTNN của A=-16 <=> x--4 C=-2x^2+8x-15 C=-2(x^2-4x+15/2) C=-2(x^2-4x+4)+7/2 C=-2(x-2)^2+7/2 Vậy GTNN của C= 7/2 <=> x=2
24 tháng 7 2023

\(A=x^2-x+3=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}+3=\left(x-2\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\left(x-2\right)^2\ge0\right)\)

\(\Rightarrow Min\left(A\right)=\dfrac{11}{4}\)

\(B=x^2-4x+1=x^2-4x+4-4+1=\left(x-2\right)^2-3\ge-3\left(\left(x-2\right)^2\ge0\right)\)

\(\Rightarrow Min\left(B\right)=-3\)

Câu C bạn xem lại đề

\(D=3-4x-x^2=3+4-4-4x-x^2=7-\left(x^2+4x+4\right)=7-\left(x+2\right)^2\le7\left(-\left(x+2\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=7\)

24 tháng 7 2023

\(A=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\in R\)

Vậy GTNN của A là 11/4 khi x=1/2

NV
31 tháng 1 2021

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

22 tháng 6 2021

thế bạn bt hok

21 tháng 9 2019

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

11 tháng 5 2023

Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:

P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a

Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:

x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0

Vậy giá trị lớn nhất của P là:

P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b

Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:

x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022

Vậy giá trị nhỏ nhất của P là:

P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)

Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).